ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 42 (22). 10,018-10,026.
    Publication Date: 2020-11-04
    Description: Key Points: Daily snapshots of TIL strength; synoptic-Scale behavior of the TIL and shear/curl contributions to relative vorticity; TIL within ridges in midlatitude winter is stronger than polar summer TIL High-resolution GPS radio occultation temperature profiles from the COSMIC satellite mission (2007–2013) are used to obtain daily snapshots of the strength of the extratropical tropopause inversion layer (TIL). Its horizontal structure and day-to-day variability are linked to the synoptic situation at near-tropopause level. The strength of the TIL in cyclonic as well as anticyclonic conditions is investigated by separating relative vorticity into curl and shear terms. The analysis shows that the TIL has high zonal variability, and its strength is instantaneously adjusted to the synoptic situation at near-tropopause level. Our key finding is that the TIL within midlatitude ridges in winter is as strong as or stronger than the TIL in polar summer. The strongest TIL in anticyclonic conditions is related to the shear term, while the weaker TIL in cyclonic conditions is enhanced by the curl term.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 101 (C5). pp. 12001-12016.
    Publication Date: 2018-04-30
    Description: Surface layer fluxes of sensible heat and water vapor were measured from a fixed platform in the North Sea during the Humidity Exchange over the Sea (HEXOS) Main Experiment (HEXMAX). Eddy wind stress and other relevant atmospheric and oceanic parameters were measured simultaneously and are used to interpret the heat and water vapor flux results. One of the main goals of the HEXOS program was to find accurate empirical heat and water vapor flux parameterization formulas for high wind conditions over the sea. It had been postulated that breaking waves and sea spray, which dominate the air-sea interface at high wind speeds, would significantly affect the air-sea heat and water vapor exchange for wind speeds above 15 m/s. Water vapor flux has been measured at wind speeds up to 18 m/s, sufficient to test these predictions, and sensible heat flux was measured at wind speeds up to 23 m/s. Within experimental error, the HEXMAX data do not show significant variation of the flux exchange coefficients with wind speed, indicating that modification of the models is needed. Roughness lengths for heat and water vapor derived from these direct flux measurements are slightly lower in value but closely parallel the decreasing trend with increasing wind speed predicted by the surface renewal model of Liu et al. [1979], created for lower wind speed regimes, which does not include effects of wave breaking. This suggests that either wave breaking does not significantly affect the surface layer fluxes for the wind speed range in the HEXMAX data, or that a compensating negative feedback process is at work in the lower atmosphere. The implication of the feedback hypothesis is that the moisture gained in the lower atmosphere from evaporation of sea spray over rough seas may be largely offset by decreased vapor flux from the air-sea interface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-19
    Description: The mixed layer (ML) temperature and salinity changes in the central tropical Atlantic have been studied by a dedicated experiment (Cold Tongue Experiment (CTE)) carried out from May to July 2011. The CTE was based on two successive research cruises, a glider swarm, and moored observations. The acquired in situ data sets together with satellite, reanalysis, and assimilation model data were used to evaluate box-averaged ML heat and salinity budgets for two subregions: (1) the western equatorial Atlantic cold tongue (ACT) (23°–10°W) and (2) the region north of the ACT. The strong ML heat loss in the ACT region during the CTE was found to be the result of the balance of warming due to net surface heat flux and cooling due to zonal advection and diapycnal mixing. The northern region was characterized by weak cooling and the dominant balance of net surface heat flux and zonal advection. A strong salinity increase occurred at the equator, 10°W, just before the CTE. During the CTE, ML salinity in the ACT region slightly increased. Largest contributions to the ML salinity budget were zonal advection and the net surface freshwater flux. While essential for the ML heat budget in the ACT region, diapycnal mixing played only a minor role for the ML salinity budget. In the region north of the ACT, the ML freshened at the beginning of the CTE due to precipitation, followed by a weak salinity increase. Zonal advection changed sign contributing to ML freshening at the beginning of the CTE and salinity increase afterward.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...