ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Paleoceanography and Paleoclimatology, 33 (5). pp. 530-543.
    Publikationsdatum: 2021-02-08
    Beschreibung: The notion of a shallow northern sourced intermediate water mass is a well evidenced feature of the Atlantic circulation scheme of the Last Glacial Maximum (LGM). However, recent observations from stable carbon isotopes (δ13C) at the Corner Rise in the deep northwest Atlantic suggested a significant contribution of a Northern Component Water mass to the abyssal northwest Atlantic basin that has not been described before. Here we test the hypothesis of this northern sourced water mass underlying the southern sourced glacial Antarctic Bottom Water by measuring the authigenic neodymium (Nd) isotopic composition from the same sediments from 5,010-m water depth. Neodymium isotopes act as a semiconservative water mass tracer capable of distinguishing between Northern and Southern Component Waters at the northwest Atlantic. Our new Nd isotopic record resolves various water mass changes from the LGM to the early Holocene in agreement with existing Nd-based reconstructions from across the west Atlantic Ocean. Especially pronounced are the Younger Dryas and Bølling-Allerød with unprecedented changes in the Nd isotopic composition. For the LGM we found Nd isotopic evidence for a northern sourced water mass contributing to abyssal depths, thus being in agreement with previous δ13C data from Corner Rise. Overall, however, the deep northwest Atlantic was still dominated by southern sourced water, since we found signatures that are intermediate between northern and southern end member compositions. Furthermore, this new record indicates that C and Nd isotopes were partly decoupled, pointing to nonconservative behavior of one or more likely of both water mass proxies during the LGM.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-02-06
    Beschreibung: Combined seawater radiogenic hafnium (Hf) and neodymium (Nd) isotope compositions were extracted from bulk sediment leachates and foraminifera of Site 1088, ODP Leg 177, 2082 m water depth on the Agulhas Ridge. The new data provide a continuous reconstruction of long and short-term changes in ocean circulation and continental weathering inputs since the Mid-Miocene. Due to its intermediate water depth the sediments of this core sensitively recorded changes in admixture of North Atlantic Deep Water (NADW) to the Antarctic Circumpolar Current (ACC) as a function of the strength of the Atlantic Meridional Overturning Circulation (AMOC). Nd isotope compositions (εNd) range from -7 to -11 with glacial values generally 1 to 3 units more radiogenic than during the interglacials of the Quaternary. The data reveal episodes of significantly increased AMOC strength during late Miocene and Pliocene warm periods whereas peak radiogenic εNd values mark a strongly diminished AMOC during the major intensification of Northern Hemisphere Glaciation near 2.8 Ma and in the Pleistocene after 1.5 Ma. In contrast, the Hf isotope compositions (εHf) show an essentially continuous evolution from highly radiogenic values of up to +11 during the Miocene to less radiogenic present day values (+2 to +4) during the late Quaternary. The data document a long-term transition in dominant weathering inputs, where inputs from the South America are replaced by those from Southern Africa. Moreover, radiogenic peaks provide evidence for the supply of radiogenic Hf originating from Patagonian rocks to the Atlantic sector of the Southern Ocean via dust inputs.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-02-06
    Beschreibung: We present the first subprecessional record of seawater 87Sr/86Sr isotope ratios for a marginal Mediterranean subbasin. The sediments contained in this interval (three precessional cycles between 6.60 and 6.55 Ma) are important because they record conditions during the transition to the Messinian Salinity Crisis (MSC; 5.97 to 5.33 Ma), an event for which many details are still poorly understood. The record, derived from planktic foraminifera of the late Miocene Sorbas Basin (SE Spain), shows brief excursions with precessional cyclicity to 87Sr/86Sr ratios higher than coeval ocean 87Sr/86Sr. The hydrologic conditions required to generate the observed record are investigated using box modeling, constrained using a new paleodepth estimate (150 to 250 m) based on benthic foraminiferal assemblages. The box model results highlight the role of climate-driven interbasin density contrast as a significant driver of, or impediment to, exchange. The results are particularly significant in the context of the MSC, where 87Sr/86Sr excursions have been interpreted purely as a consequence of physical restriction. To replicate the observed temporal patterns of lithological variations and 87Sr/86Sr isotope excursions, the Sorbas Basin “box” must have a mainly positive hydrologic budget, in contrast with the Mediterranean's negative budget during the late Miocene. This result has implications for the assumption of synchronous deposition of specific sedimentary layers (sapropels) between marginal and open Mediterranean settings at subprecessional resolution. A net positive hydrologic budget in marginal Mediterranean subbasins may reconcile observations of freshwater inclusions in gypsum deposits.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Copernicus Publications (EGU)
    In:  Climate of the Past, 10 (2). pp. 607-622.
    Publikationsdatum: 2014-06-02
    Beschreibung: Late Miocene tectonic changes in Mediterranean–Atlantic connectivity and climatic changes caused Mediterranean salinity to fluctuate dramatically, including a ten-fold increase and near-freshening. Recent proxy- and model-based evidence suggests that at times during this Messinian Salinity Crisis (MSC, 5.96–5.33 Ma), highly saline and highly fresh Mediterranean water flowed into the North Atlantic Ocean, whilst at others, no Mediterranean Outflow Water (MOW) reached the Atlantic. By running extreme, sensitivity-type experiments with a fully coupled ocean–atmosphere general circulation model, we investigate the potential of these various MSC MOW scenarios to impact global-scale climate. The simulations suggest that although the effect remains relatively small, MOW had a greater influence on North Atlantic Ocean circulation and climate than it does today. We also find that depending on the presence, strength and salinity of MOW, the MSC could have been capable of cooling mid–high northern latitudes by a few degrees, with the greatest cooling taking place in the Labrador, Greenland–Iceland–Norwegian and Barents seas. With hypersaline MOW, a component of North Atlantic Deep Water formation shifts to the Mediterranean, strengthening the Atlantic Meridional Overturning Circulation (AMOC) south of 35° N by 1.5–6 Sv. With hyposaline MOW, AMOC completely shuts down, inducing a bipolar climate anomaly with strong cooling in the north (mainly −1 to −3 °C, but up to −8 °C) and weaker warming in the south (up to +0.5 to +2.7 °C). These simulations identify key target regions and climate variables for future proxy reconstructions to provide the best and most robust test cases for (a) assessing Messinian model performance, (b) evaluating Mediterranean–Atlantic connectivity during the MSC and (c) establishing whether or not the MSC could ever have affected global-scale climate.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Paleoceanography, 26 (2). PA2101.
    Publikationsdatum: 2013-05-15
    Beschreibung: The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in the Northern Hemisphere climate system. Significant interest went into the question of how excessive freshwater input through melting of continental ice can affect its overturning vigor and, hence, heat supply, to higher northern latitudes. Such forcing can be tested by investigating its behavior during extreme iceberg discharge events into the open North Atlantic during the last glacial period, the so-called Heinrich events (HE). Here we present neodymium (Nd) isotope compositions of past seawater, a sensitive chemical water mass tag, extracted from sediments of Ocean Drilling Program Site 1063 in the western North Atlantic (Bermuda Rise), covering the period surrounding HE 2, the Last Glacial Maximum, and the early deglaciation. These data are compared with a record of the kinematic circulation tracer (231Pa/230Th)xs extracted from the same sediment core. Both tracers indicate significant circulation changes preceding intense ice rafting during HE 2 by almost 2 kyr. Moreover, the Nd isotope record suggests the presence of deeply ventilating North Atlantic Deep Water early during Marine Isotope Stage 2 until it was replaced by Southern Source Water at ∼27 ka. The early switch to high (Pa/Th)xs and radiogenic ɛNd in relation to intensified ice rafting during HE 2 suggests that ice rafting into the open North Atlantic during major HE 2 was preceded by an early change of the AMOC. This opens the possibility that variations in AMOC contributed to or even triggered the ice sheet instability rather than merely responding to it.
    Materialart: Article , PeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2017-07-28
    Beschreibung: [1] Radiogenic isotope compositions (Sr, Nd, Pb, Hf, and Os) of sediment-hosted seafloor ferromanganese crusts and sediments incrusted with ferromanganese oxyhydroxides from the Lesser Antilles island arc were measured to distinguish between hydrogenous (seawater-derived) and hydrothermal metal sources. The ages of the precipitates range between recent (last few thousand years) and a few 100 kyr as deduced from 10Be and Co concentrations. Evidence from the presence of bladed todorokite and nontronite, together with the major element and REE composition, suggests that a significant proportion of these sediment-hosted precipitates formed at relatively low temperatures from a mixture of seawater and hydrothermal fluids associated with island arc volcanism. The radiogenic isotope compositions of all metals mentioned above, except Pb, show large differences in hydrothermal versus hydrogenous contributions over space and time. In contrast to precipitates of high-temperature fluids which mainly scavenge their REE contents from seawater the crusts of this study show 143Nd/144Nd of up to 0.512817 (ɛNd = +3.5). This is close to the signature of the nearby island arc rocks and far above the expected local seawater ratio of ∼0.51209 (ɛNd = −10.7). These crusts also show high 176Hf/177Hf (up to 0.283102), low 87Sr/86Sr (up to 0.7069), and low 187Os/188Os (up to 0.16) compared with local seawater, as expected from hydrothermal, island-arc-derived metal contributions. In contrast, the Pb isotope signatures of the crusts cannot be explained by mixing between seawater and hydrothermal sources. It is suggested that Pb was either removed from the ascending fluids within the sediment column before they reached seawater or the temperatures were too low to leach significant amounts of Pb from the rocks or sediments. External sources such as Saharan dust, particulate inputs from the Orinoco River, or even incongruent release of Pb isotopes from the island arc rock-derived particles must have contributed to the observed Pb isotope variability. Our results suggest that submarine hydrothermalism originating from intraoceanic island arc volcanism creates distinct geochemical environments for the dispersion of hydrothermal fluids and may be an important mechanism to supply metals of hydrothermal origin to seawater.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-01-31
    Beschreibung: Global climatic changes during the last Glacial and Deglacial have been related to variations of the Atlantic Meridional Overturning Circulation (AMOC). Here, we present new and refined 231Pa/230Th down‐core profiles extending back to 30 ka BP from the northwestern Atlantic along the Atlantic Deep Western Boundary Current (DWBC), which is the main component of the southward deep backflow of the AMOC. Besides the well‐known Bermuda Rise records, available high‐resolution 231Pa/230Th data in the northwestern Atlantic are still sparse. Our new records along with reconstructions of deep water provenance from Nd isotopes constrain the timing and magnitude of past changes in AMOC from an additional northwestern Atlantic region forming a depth transect between 3000 and 4760 m water depth. Our extended and improved dataset confirms the weakening of the AMOC during deglacial cold spells such as Heinrich Event 1 and the Younger Dryas interrupted by a reinvigoration during the Bølling‐Allerød interstadial as seen in the prominent 231Pa/230Th records from the Bermuda Rise. However, in contrast to the Bermuda Rise records we find a clearly reduced circulation strength during the Last Glacial Maximum in the deep Atlantic.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-01-31
    Beschreibung: There is a converging body of evidence supporting a measurable slowdown of the Atlantic Meridional Overturning Circulation (AMOC) as climate warms and Northern Hemisphere ice sheets inexorably shrink. Within this context, we assess the variability of the AMOC during the Holocene based on a marine sediment core retrieved from the deep northwest Atlantic, which sensitively recorded large‐scale deglacial transitions in deep water circulation. While there is a diffuse notion of Holocene variability in Labrador and Nordic Seas overturning, we report a largely invariable deep water circulation for the last ~11,000 years, even during the meltwater pulse associated with the 8.2‐ka event. Sensitivity tests along with high‐resolution 231Pa/230Th data constrain the duration and the magnitude of possible Holocene AMOC variations. The generally constant baseline during the Holocene suggests attenuated natural variability of the large‐scale AMOC on submillennial timescales and calls for compensating effects involving the upstream components of North Atlantic Deep Water.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Paleoceanography and Paleoclimatology, 34 . pp. 2201-2222.
    Publikationsdatum: 2022-01-31
    Beschreibung: Astronomical tuning in the Mediterranean region is primarily based on organically‐mediated proxies, such as cyclicity of organic rich layers or changes in foraminiferal assemblages. Both during and post deposition, organic proxies can be affected by complex processes not immediately related to the changes in precession (insolation) they are assumed to reflect. Here we present an isotopic proxy which exhibits precessional cyclicity yet is inorganic. Seawater lead (Pb) isotope records over four precessional cycles between 6.6 and 6.5 Ma, from bulk sediment leachates of three Messinian, circum‐Mediterranean marginal locations, show variations consistent with precessional cyclicity. During insolation minima, the Pb isotope signatures from all three sites converge to similar values, suggesting a regional process is affecting all three locations at that time. Data from the marginal sites are compared with new data from ODP Site 978 and published data from a variety of geological archives from the Mediterranean region to determine the mechanism(s) causing the observed variability. While the comparisons are not fully conclusive, the timing of events suggest that increased dust production from North Africa during insolation minima is the most likely control. This hypothesis implies that authigenic marine Pb isotope records have the potential to provide a reliable inorganic tie point for Mediterranean cyclostratigraphy where sub‐precessional resolution is required. An inorganic tie point could also provide the means to resolve long‐standing problems in Mediterranean stratigraphy on precessional and sub‐precessional timescales which have been obscured due to post‐depositional changes (e.g., sapropel burn‐down) or suboptimal ecological conditions (e.g., the Messinian Salinity Crisis).
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2023-02-08
    Beschreibung: The neodymium (Nd) isotopic composition of seawater is a valuable tool for the reconstruction of past water mass provenance and hence deep water geometry. A meaningful interpretation of Nd isotope down‐core records requires knowledge of potential variations of water mass end member characteristics. While often assumed temporally constant, recent investigations revealed glacial‐interglacial variability of the northern and southern Nd isotope end members in the Atlantic. These new constraints have a strong influence on the interpretation of the Atlantic deep water mass evolution, yet the processes responsible for the end member shifts remain uncertain. Here we combine a new compilation of Atlantic Nd isotope reconstructions of the early Holocene with the Nd‐enabled Bern3D model to quantify the recently proposed hypothesis of a northern Nd isotope end member shift during the early Holocene. We achieve the best model‐data fit with a strong increase of the Nd flux in the northern high latitudes by a factor of 3 to 4, which lowers the northern end member signature by about 1 ε‐unit. Our findings thus agree with the rationale that glacially weathered material entered the northern Northwest Atlantic after the ice sheets retreated late in the deglaciation and released substantial amounts of unradiogenic Nd as suggested previously. Further, we find that variations in the strength of the Atlantic Meridional Overturning Circulation (AMOC) cannot reproduce the observed Nd isotope excursions of the compiled data, ruling out an early Holocene AMOC “overshoot.”
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...