ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 6 (1986), S. 2-14 
    ISSN: 0886-1544
    Keywords: Allogromia ; reticulopods ; cytoskeleton ; microtubules ; actin ; saltatory transport ; cell shape ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cytoskeletal inhibitors were used as probes to test the involvement of microtubules and actin microfilaments in the development, motility, and shape maintenance of the pseudopodial networks (i e, reticulopodia) of the foraminifers Allogromia sp strain NF and Allogromia laticcllaris. Agents that disassemble cytoplasmic microtubules (cold, colchicine, and nocodazole) arrest all movement but have variable effects on reticulopodial shape. Electron microscopy reveals a granulofibrillar matrix but few, if any, microtubules in these motility-arrested reticulopods. Allogromiids treated with cytochalasin B or D lose substrate adhesion and undergo dramatic changes in shape and motile behavior, highlighted by the coalescence of reticulopodial cytoplasm into irregularly shaped bodies with chaotic motility. Serial semithick sections of such preparations, viewed by high-voltage electron microscopy, document a striking rearrangement of microtubules within these cytochalasin-induced bodies. All aspects of cytochalasin-altered motility are completely inhibited by colchicine. Actin is present in reticulopodia, as determined by staining with rhodamine-phalloidin; this staining is not observed in cytochalasin-treated organisms. These data provide compelling evidence that microtubules are required for reticulopodial motility. An actin-based cytoskeleton is thought to play a role in maintaining shape, mediating pseudopod/substrate adhesion, and coordinating the various microtubule-dependent processes.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 6 (1986), S. 146-152 
    ISSN: 0886-1544
    Keywords: Allogromia ; microtubules ; microtubule-associated protein (MAP-2) ; actin ; cyanideinsensitive respiration ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We summarize our recent immunocytochemical characterization of the reticulopodial cytoskeleton of two allogromiid foraminifers and our pharmacologic dissection of its motility. The reticulopodial microtubule cytoskeleton stained with an antiserum to brain microtubule-associated protein 2. Polymeric actin was localized in the reticulopodia by rhodamine-phalloidin staining. Microtubule inhibitors reversibly inhibited all aspects of motility; cytochalasins induced altered morphology and disorganization of motility but did not inhibit pseudopodial movements or intracellular transport. Simultaneous application of KCN and salicylhydroxamic acid (an alternative oxidase inhibitor) rapidly blocked all movement, indicating that motility is dependent on metabolic energy and that an alternative oxidative pathway functions in allogromiids. Micromanipulation and laser microsurgical experiments revealed tension throughout the reticulopodium. Our results suggest that microtubules are active components of the reticulopodial motile machinery. Actin may mediate substrate adhesion, whole-cell locomotion, pseudopodial tension, and coordination of the microtubule-based motility.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 10 (1988), S. 126-136 
    ISSN: 0886-1544
    Keywords: microtubules ; Allogromia ; intracellular transport ; surface motility ; actin ; morphogenesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Microtubules are the major cytoskeletal component of foraminiferan reticulopodia. Video-enhanced differential interference contrast light microscopy has demonstrated that the microtubules serve as the intracellular tracks along which rapid bidirectional organelle transport and cell surface motility occurs. Microtubules appear to move, both axially and laterally within the pseudopodial cytoplasm, and these microtubule translocations appear to drive the various reticulopodial movements. F-actin is localized to discrete filament plaques form at sites of pseudopod-substrate adhesion. Correlative immunofluorescence and electron microscopy reveals a structural interaction between microtubules and the actin-containing filament plaques. Our recent data on reticulopodial motility are discussed in an historical context, and a model for foram motility, based on motile microtubules, is presented.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...