ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
Collection
Years
Year
  • 1
    Publication Date: 1994-06-17
    Description: Convective updrafts in thunderstorms prolong the lifetime of ozone (O(3)) and its anthropogenic precursor NOx [nitric oxide (NO) + nitrogen dioxide (NO(2))] by carrying these gases rapidly upward from the boundary layer into a regime where the O(3) production efficiency is higher, chemical destruction is slower, and surface deposition is absent. On the other hand, the upper troposphere is relatively rich in O(3) and NOx from natural sources such as downward transport from the stratosphere and lightning; convective overturning conveys the O(3) and NOx toward the Earth's surface where these components are more efficiently removed from the atmosphere. Simulations with a three-dimensional global model suggest that the net result of these counteractive processes is a 20 percent overall reduction in total tropospheric O(3). However, the net atmospheric oxidation efficiency is enhanced by 10 to 20 percent.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lelieveld, J -- Crutzen, P J -- New York, N.Y. -- Science. 1994 Jun 17;264(5166):1759-61.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17839912" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-10-02
    Description: Anthropogenic SO(2) emissions may exert a significant cooling effect on climate in the Northern Hemisphere through backscattering of solar radiation by sulfate particles. Earlier estimates of the sulfate climate forcing were based on a limited number of sulfate-scattering correlation measurements from which a high sulfate-scattering efficiency was derived. Model results suggest that cloud processing of air is the underlying mechanism. Aqueous phase oxidation of SO(2) into sulfate and the subsequent release of the dry aerosol by cloud evaporation render sulfate a much more efficient scatterer than through gas-phase SO(2) oxidation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lelieveld, J -- Heintzenberg, J -- New York, N.Y. -- Science. 1992 Oct 2;258(5079):117-20.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17835896" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...