ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (4)
  • 1
    Publication Date: 2019-06-28
    Description: During the Higher Harmonic Control Aeroacoustic Rotor Test, extensive measurements of the rotor aerodynamics, the far-field acoustics, the wake geometry, and the blade motion for powered, descent, flight conditions were made. These measurements have been used to validate and improve the prediction of blade-vortex interaction (BVI) noise. The improvements made to the BVI modeling after the evaluation of the test data are discussed. The effects of these improvements on the acoustic-pressure predictions are shown. These improvements include restructuring the wake, modifying the core size, incorporating the measured blade motion into the calculations, and attempting to improve the dynamic blade response. A comparison of four different implementations of the Ffowcs Williams and Hawkings equation is presented. A common set of aerodynamic input has been used for this comparison.
    Keywords: AERODYNAMICS
    Type: NASA-TM-110825 , NAS 1.15:110825 , AD-A294477
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The use of a blade vortex interaction noise prediction scheme, based on CAMRAD/JA, FPR and RAPP, quantifies the effects of errors and assumptions in the modeling of the helicopter's shed vortex on the acoustic predictions. CAMRAD/JA computes the wake geometry and inflow angles that are used in FPR to solve for the aerodynamic surface pressures. RAPP uses these surface pressures to predict the acoustic pressure. Both CAMRAD/JA and FPR utilize the Biot-Savart Law to determine the influence of the vortical velocities on the blade loading and both codes use an algebraic vortex model for the solid body rotation of the vortex core. Large changes in the specification of the vortex core size do not change the inplane wake geometry calculated by CAMRAD/JA and only slightly affect the out-of-plane wake geometry. However, the aerodynamic surface pressure calculated by FPR changes in both magnitude and character with small changes to the core size used by the FPR calculations. This in turn affects the acoustic predictions. Shifting the CAMRAD/JA wake geometry away from the rotor plane by 1/4 chord produces drastic changes in the acoustic predictions indicating that the prediction of acoustic pressure is extremely sensitive to the miss distance between the vortex and the blade and that this distance must be calculated as accurately as possible for acceptable noise predictions. The inclusion or exclusion of a vortex in the FPR-RAPP calculation allows for the determination of the relative importance of that vortex as a BVI noise source.
    Keywords: ACOUSTICS
    Type: NASA-TM-110823 , NAS 1.15:110823 , AD-A294466
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An extensive quantity of airload measurements was obtained for a pressure-instrumented model of the BO-105 main rotor for a large number of higher-harmonic control (HHC) settings at Duits-Nederlandse Wind Tunnel (DNW). The wake geometry, vortex strength, and vortex core size were also measured through a laser light sheet technique and LDV. These results are used to verify the BVI airload prediction methodologies developed by AFDD, DLR, NASA Langley, and ONERA. The comparisons show that an accurate prediction of the blade motion and the wake geometry is the most important aspect of the BVI airload predictions.
    Keywords: AERODYNAMICS
    Type: NASA-TM-110824 , NAS 1.15:110824 , AD-A294468
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: This paper describes a new geometric analysis procedure for wing sections. This procedure is based on the normal mode analysis for continuous functions. A set of special shape functions is introduced to represent the geometry of the wing section. The generators of the NACA 4-digit airfoils were included in this set of shape functions. It is found that the supercritical wing section, Korn airfoil, could be well represented by a set of ten shape functions. Preliminary results showed that the number of parameters to define a wing section could be greatly reduced to about ten. Hence, the present research clearly advances the airfoil design technology by reducing the number of design variables.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110346 , A-950049 , NAS 1.15:110346
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...