ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (16)
Collection
Years
Year
  • 1
    Publication Date: 2000-06-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-06-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: Conventional wisdom is that lidar pulses do not significantly penetrate clouds having optical thickness exceeding about tau = 2, and that no returns are detectable from more than a shallow skin depth. Yet optically thicker clouds of tau much greater than 2 reflect a larger fraction of visible photons, and account for much of Earth s global average albedo. As cloud layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud, and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FoV) receivers commonly used in lidar applications. THOR - Thickness from Off-beam Returns - is an airborne wide-angle detection system with multiple FoVs, capable of observing the diffuse halo, detecting wide-angle signal from which physical thickness of optically thick clouds can be retrieved. In this paper we describe the THOR system, demonstrate that the halo signal is stronger for thicker clouds, and validate physical thickness retrievals for clouds having z 〉 20, from NASA P-3B flights over the Department of Energy/Atmospheric Radiation Measurement/Southern Great Plains site, using the lidar, radar and other ancillary ground-based data.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: With solar activity just passing the maximum of cycle 23, SORCE is beginning a 5 year mission to measure total solar irradiance (TSI) with unprecedented accuracy using phase-sensitive detection, and to measure spectral solar irradiance (SSI) with unprecedented spectral coverage, from 1 to 2000 nm. The new Total Irradiance Monitor (TIM) has 4 active cavity radiometers, any one of which can be used as a fixed-temperature reference against any other that is exposed to the Sun via a shutter that cycles at a rate designed to minimize noise at the shutter frequency. The new Spectral Irradiance Monitor (SIM) is a dual Fery prism spectrometer that can employ either prism as a monochromatic source on the other prism, thus monitoring its transmission during the mission lifetime. Either prism can measure SSI from 200 to 2000 nm, employing the same phase-sensitive electrical substitution strategy as TIM. SORCE also carries dual SOLSTICE instruments to cover the spectral range 100-320 nm, similar to the instruments onboard UARS, and also an XUV Photometer System (XPS) similar to that on TIMED. SSI has now been added to TSI as a requirement of EOS and NPOESS, because different spectral components drive different components of the climate system - UV into upper atmosphere and stratospheric ozone, IR into tropospheric water vapor and clouds, and Visible into the oceans and biosphere. Succeeding satellite missions being planned for 2006 and 2011 will continue to monitor these critical solar variables.
    Keywords: Solar Physics
    Type: IGARSS 2003; Jul 21, 2003 - Jul 25, 2003; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at age 81, in St Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth s biosphere.
    Keywords: Meteorology and Climatology
    Type: AGU Fall 2003 Meeting; Dec 08, 2003 - Dec 12, 2003; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: Cloud radiative properties are sensitive to drop size and other parameters of cloud micro-structure, but also to cloud shape, spacing, and other parameters of cloud macro-structure, including internal fractal structure. New information on cloud structure is being derived from a variety of cloud radars and lidars. Ongoing field programs such as DoE/ARM are improving the measurement and modelling of physical and radiative properties of clouds. A parallel effort is underway to improve cloud remote sensing, especially from the new suite of EOS (Earth Observing System) instruments which are beginning to provide higher spectral, spatial resolution, and/or angular resolution. Key parameters for improving pixel-scale retrievals are cloud thickness and photon mean-free-path, which together determine the scale of "radiative smoothing" of cloud fluxes and radiances. This scale has been observed as a change in the spatial spectrum of Landsat cloud radiances, and was also recently found with the Goddard micropulse lidar, by searching for returns from directions nonparallel to the incident beam. "Offbeam" Lidar returns are now being used to estimate the cloud "radiative Green's function", (G). G depends on cloud thickness and may be used to retrieve that important quantity. G is also being applied to improving simple estimates of cloud radiative properties that are based on the "Independent Pixel Approximation" or IPA. This and other measurements of 3D transfer in clouds, coupled with Monte Carlo and other 3D transfer methods, are beginning to provide a better understanding of the dependence of radiation on cloud inhomogeneity, and to suggest new retrieval and parameterization algorithms which take account of cloud inhomogeneity. An international "Intercomparison of 3D Radiation Codes" or I3RC, program is underway to coordinate and evaluate the variety of 3D radiative transfer methods now available, and to make them more widely available. Information is on the Web at: http://climate.gsfc.nasa.gov/I3RC. Input consists of selected cloud fields derived from data sources such as radar, microwave and satellite, and from models involved in the GEWEX Cloud Systems Studies. Output is selected radiative quantities that characterize the large-scale properties of the fields of radiative fluxes and heating. Several example cloud fields will be used to illustrate the effects of cloud inhomogeneity and 3D radiation.
    Keywords: Meteorology and Climatology
    Type: Geosciences Workshop; Sep 25, 2001 - Sep 29, 2001; Minneapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: An international "Intercomparison of 3-dimensional (3D) Radiation Codes" 13RC) has been initiated. It is endorsed by the GEWEX Radiation Panel, and funded jointly by the United States Department of Energy ARM program, and by the National Aeronautics and Space Administration Radiation Sciences program. It is a 3-phase effort that has as its goals to: (1) understand the errors and limits of 3D methods; (2) provide 'baseline' cases for future 3D code development; (3) promote sharing of 3D tools; (4) derive guidelines for 3D tool selection; and (5) improve atmospheric science education in 3D radiation.
    Keywords: Meteorology and Climatology
    Type: International Radiation Symposium; Jul 24, 2000 - Jul 29, 2000; Saint Petersburg; Russia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: A decade ago, Stephens and Tsay provided an overview of the subject of absorption of solar radiation by clouds in the earth's atmosphere. They summarized the available evidence that pointed to disagreements between theoretical and observed values of cloud absorption (and reflection). At that time, a theoretician's approach (assuming perfect flux measurements) was adopted to test the model uncertainty under various hypotheses, such as the omitted large drops, excess absorbing aerosols, enhanced water vapor continuum absorption, and cloud inhomogeneity. Since then, several advances in theoretical work have been made, but a satisfactory answer for the discrepancy is still lacking. Now, we offer an experimentalist's approach (focusing on field, not laboratory) to examine the observational uncertainty under numerous field factors, such as the temperature dependence, attitude control, and sampling strategy in the spatial and spectral domain. Examples from recent field campaigns have pointed out that these sources of error may be responsible for the unacceptable level of uncertainty (e.g., as large as 20 W/square m). We give examples of each, discuss their contribution to overall uncertainty in shortwave absorption, and suggest a coordinated approach to their solution.
    Keywords: Meteorology and Climatology
    Type: Chapman Conference on Atmospheric Absorption of Solar Radiation; Aug 13, 2001 - Aug 17, 2001; Estes Park, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: Cloud radiative properties are sensitive to drop size and other parameters of cloud micro-structure, but also to cloud shape, spacing, and other parameters of cloud macro-structure, including internal fractal structure. New information on cloud structure is being derived from a variety of cloud radars and lidars. Ongoing field programs such as DoE/ARM (atmospheric radiation measurement) are improving the measurement and modelling of physical and radiative properties of clouds. A parallel effort is underway to improve cloud remote sensing, especially from the new suite of EOS (Earth observing system) instruments which are beginning to provide higher spectral, spatial resolution, and/or angular resolution. Key parameters for improving pixel-scale retrievals are cloud thickness and photon mean-free-path, which together determine the scale of 'radiative smoothing' of cloud fluxes and radiances. This scale has been observed as a change in the spatial spectrum of Landsat cloud radiances, and was also recently found with the Goddard micropulse lidar, by searching for returns from directions nonparallel to the incident beam. 'Offbeam' Lidar returns are now being used to estimate the cloud 'radiative Green's function' (G). G depends on cloud thickness and may be used to retrieve that important quantity. G is also being applied to improving simple estimates of cloud radiative properties that are based on the 'Independent Pixel Approximation' or IPA. This and other measurements of 3D (three dimensional) transfer in clouds, coupled with Monte Carlo and other 3D transfer methods, are beginning to provide a better understanding of the dependence of radiation on cloud inhomogeneity, and to suggest new retrieval and parameterization algorithms which take account of cloud inhomogeneity. An international 'Intercomparison of 3D Radiation Codes' (I3RC) program is underway to coordinate and evaluate the variety of 3D radiative transfer methods now available, and to make them more widely available. Information is on the Web at: http://climate.gsfc.nasa.gov/I3RC. Input consists of selected cloud fields derived from data sources such as radar, microwave and satellite, and from models involved in the GEWEX Cloud Systems Studies. Output is selected radiative quantities that characterize the large-scale properties of the fields of radiative fluxes and heating. Several example cloud fields will be used to illustrate the effects of cloud inhomogeneity and 3D radiation.
    Keywords: Meteorology and Climatology
    Type: Geosciences Workshop; Sep 25, 2001 - Sep 29, 2001; Minnesapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...