ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-03-01
    Print ISSN: 0887-0624
    Electronic ISSN: 1520-5029
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-05-01
    Print ISSN: 0887-0624
    Electronic ISSN: 1520-5029
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-08-01
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-08-01
    Description: Kingstonite, ideally Rh3S4, is a new mineral from the Bir Bir river, Yubdo District, Wallaga Province, Ethiopia. It occurs as subhedral, tabular elongate to anhedral inclusions in a Pt-Fe nugget with the associated minerals isoferroplatinum, tetraferroplatinum, a Cu-bearing Pt-Fe alloy, osmium, enriched oxide remnants of osmium, laurite, bowieite, ferrorhodsite and cuprorhodsite. It is opaque with a metallic lustre, has a black streak, is brittle and has a subconchoidal fracture and a good cleavage parallel to [001]. VHN25 is 871–920 kg/mm2. In plane-polarized reflected light, kingstonite is a pale slightly brownish grey colour. It is weakly pleochroic and displays a weak bireflectance. It does not possess internal reflections. The anisotropy is weak to moderate in dull greys and browns. Reflectance data and colour values are tabulated. Average results of twenty electron microprobe analyses on four grains give Rh 46.5, Ir 16.4, Pt 11.2, S 25.6, total 99.7 wt.%. The empirical formula is (Rh2.27Ir0.43Pt0.29)Σ2.99S4.01, based on 7 atoms per formula unit (a.p.f.u.). Kingstonite is monoclinic (C2/m) with a = 10.4616(5), b = 10.7527(5), c = 6.2648(3) Å, β = 109.000(5)°, V = 666.34(1) Å3 (Z = 6). The calculated density is 7.52 g/cm3 (on the basis of the empirical formula and unit-cell parameters refined from powder data). The seven strongest X-ray powder-diffraction lines [d in Å(I) (hkl)] are: 3.156 (100) (310), 3.081 (100) (1̄31), 2.957 (90) (002), 2.234 (60) (202), 1.941 (50) (2̄23), 1.871 (80) (4̄41) and 1.791 (90) (060, 1̄33). The structure of kingstonite was solved and refined to Rp = 3.8%. There are four distinct metal sites with Rh occupancies of 0.64–0.89. Two metal sites are regular RhS6 octahedra that share edges to form a ribbon running parallel to c. The other two metal sites are coordinated by 4 S + 2 Rh and 5 S + 2 Rh and define a puckered Rh6 ring. The ribbons of regular RhS6 octahedra alternate with the columns of Rh6 rings linked by S atoms. S–S bridges also connect the ribbons and columns. As such, the kingstonite structure is essentially that of synthetic Rh3S4. Minor differences in the unit-cell parameters, atom coordinates and displacement parameters of kingstonite and synthetic Rh3S4 arise from the considerable substitution of Ir for Rh. The mineral name honours Gordon Kingston (formerly of Cardiff University) in recognition of his contributions to platinum group element mineralogy and the geology of their mineral deposits.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-06-01
    Description: The octahedral-framework mineral bernalite, Fe(OH)3, provides a rare opportunity to examine directly the effects of a vacant A site upon the physical properties of perovskite-like structures. Here, we report the effect upon compressibility. Bernalite has been reported previously as having space group Immm (Birch et al., 1993), but numerous reflections violating I-centering were observed in the present study. A case is presented for bernalite having orthorhombic space group Pmmn. Lattice parameters were refined using the Le Bail method for a metrically tetragonal cell and their variation with pressure at room temperature was determined from 17 measurements at pressures from 10–4 to 9.3 GPa using synchrotron X-ray powder diffraction. No discontinuities in the compression curves of lattice parameters were observed. Fitting to a second-order Birch-Murnaghan equation-of-state (KT0' = 4) gives V0 = 438.51±0.06 Å3 and KT0 = 78.2±0.4 GPa. Second-order fits of (a/a0)3 and (c/c0)3 give elastic moduli KT0a = 82.0(6) GPa and KT0c = 71.6(4) GPa: the shorter cation–cation distance is the more compressible. These values are very close to those of stottite, FeGe(OH)6, which has tilt system a+a+c–. The difference in the elastic moduli KT0a and KT0c of bernalite and their close similarity to the stottite values support the revised Pmmn structure (tilt system a+b+c–) for bernalite proposed here. The compressional anisotropy observed in bernalite may reflect its highly anisotropic and directional H-bonding topology.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-12-01
    Description: The presence of structural OH in amphiboles in excess of the usual two OH per formula has been debated for over 40 years (Gier et ah,1964; Leake et ah,1968). However, the reality of the excess-OH phenomenon is still an open question, because accurate water analyses of amphiboles are rarely available. In this study, we review the data available on the chemically simple synthetic system Na2O—MgO-SiO2-H2O (NMSH) and present new results from NMR, infrared spectroscopy, and X-ray-diffraction that allow re-interpretation of previous studies of NMSH amphiboles along the pseudobinary join between the two end-member compositions Na2Mg6Si8O22(OH)2 and Na3Mg5Si8O21(OH)3.We show that there is extensive solid solution involving excess H at 650—750°C, but also document the presence of a wide miscibility gap below 600°C. This miscibility gap is defined by amphiboles very close to the end-member composition Na3Mg5Si8O22(OH)3 coexisting with amphiboles with compositions near the ‘normal’ Na2Mg6Si8O22(OH)2 end member.We also report the characterization of triple-chain silicates (TCS) in the NMSH system and their phase relations with NMSH amphiboles. The upper thermal stability field of the key TCS Na2Mg4Si6O16(OH)2relative to its decomposition to two NMSH amphiboles with a combined equivalent composition has been determined and a pronounced backbend of the transformation boundary documented. Phase relations observed in synthesis experiments suggest that at 550—650°C all TCSs have compositions close to Na2Mg4Si6Oi6(OH)2. Infrared spectroscopy indicates that the TCS synthesized on this composition, studied in detail here, vary from end-member Na2Mg4Si6Oi6(OH)2 to binary solid solutions with less than ∼6 mol.% clinojimthompsonite component. No clear spectroscopic evidence for a ‘Drits’ component NaMg4Si6Oi5(OH)3 (Drits et al.,1975) has been found. Analysis of H2O by vacuum extraction and Karl-Fischer titration indicates large excesses of H2O in all the TCSs studied here that clearly exceed the amounts expected from (OH) groups alone. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) indicate that this excess H2O is structural. We propose that the excess H2O is likely to be molecular H2O located in the ^4-site channels. The observed backbend of the triple-chain decomposition curve is in agreement with a reaction involving dehydration and loss of this molecular H2O. However, the absolute amount of analysed molecular H2O exceeds that expected from the change in Clapeyron slope alone.While demonstrating the reality of excess OH in amphiboles, the evidence presented in this paper also points to interesting avenues for future research on both amphiboles and TCSs, such as understanding the dynamics and enhanced crystal chemistry of excess OH and molecular H2O in pyriboles.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-12-01
    Description: The structure of prehnite Ca2Al(AlSi3O10)(OH)2, including H positions, has been determined by a combination of single-crystal X-ray diffraction and neutron powder diffraction on four natural samples. The symmetry of the average structure with Al/Si disordered at the T2 siteis Pncm. However, for four of the crystals studied, numerous violations of the n- and c-glide reflection conditions indicate lower symmetry corresponding to space groups P2cm and P2/n and Al-Si ordered structures, possibly as domains of different symmetries and ordering within a single crystal. Time-of-flight neutron powder diffraction was carried out on a sample from Mali at 293 K and 2 K. The structure was refined in space group Pncm by Rietveld analysis. Although it was not possible to locate the missing H using the 293 K neutron data, these data were used to refine the H position located approximately by single-crystal XRD and to refine Uiso. For the 2 K neutron powder diffraction data, H was located directly by difference-Fourier synthesis and its refined position found to be in close agreement with that obtained by the combined XRD/neutron 293 K dataset.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-06-01
    Description: The crystal structure of seeligerite, Pb3IO4Cl3, from the San Rafael mine, Sierra Gorda, Chile, was solved in the space group Cmm2, and refined to R = 3.07%. The unit-cell parameters are: a = 7.971(2), b = 7.976(2), c = 27.341(5) Å, V = 1738.3(6) Å3 and Z = 8. The crystal structure consists of a stacking sequence along [001] of square-net layers of O atoms and square-net layers of Cl atoms with Pb+ and I+ cations located in the voids of the packing. As is typical of cations with a stereoactive lone-pair of electrons, Pb2+ and I5+ adopt strongly-asymmetrical configurations. Pb2+ cations occur in a variety of coordination polyhedra, ranging from anticubes and monocapped anticubes to pyramidal ‘one-sided’ coordinations. I5+ is coordinated by a square of four oxygen atoms: I1 and I3 exhibit a ‘one-sided’ coordination, whereas I2 has square-planar coordination.The TEM investigation has revealed additional superlattice reflections (which were not registered by X-ray diffraction (XRD)) in the hk0 diffraction pattern of seeligerite based upon a 0.158 Å-1 square net, which can be interpreted as arising from a 20-cation super-sheet motif (12.6 Å x 12.6 Å), likely related to a further level of Pb-I order superimposed upon the 8-site motif identified by XRD.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-02-01
    Description: The [4]Al/Si and [6]Al/Mg order-disorder behaviour of minerals in the tremolite-tschermakite solid solution (namely, end-member tschermakite and the 50:50 composition, magnesiohornblende) has been investigated by Monte Carlo simulation, using a model Hamiltonian in which atomic interaction parameters Ji were derived from empirical lattice energy calculations, and chemical potential terms μj (to express the preferences of cations for particular crystallographic sites) were derived from ab initio methods. The simulations performed were increasingly complex. Firstly, ordering in one tetrahedral double chain with Al:Si = 1:3 (tschermakite) was simulated. Although the low-temperature cation distribution in this system was ordered, there was no phase transition (due to the quasi-one-dimensional nature of the system). Next, interactions between tetrahedral Al:Si = 1:3 double chains were included, and a phase transition was observed, with the cation distribution in one double chain lining up with respect to that in the next. Finally, interactions between tetrahedral and octahedral sites were incorporated, to model the whole unit cell, and compositions corresponding to tschermakite and magnesiohornblende were investigated. The whole-cell simulation results compare favourably with experimental conclusions for magnesiohornblende, in that Al at T1 is preferred over Al at T2, and Al at M2 is favoured over that at M1 and M3, but the significant amount of Al at M1 is at odds with experimental observation.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-08-01
    Description: The distribution of Mg and Ni over the octahedrally-coordinated sites M(l,2,3) in Ni-substituted potassic richterite solid solution, AKB(NaCa)c(Mg2.5Ni2.5)Si8O22(OH)2, synthesized at 0.1 GPa/750°C (25 days), has been studied in situ to 700°C by neutron powder diffraction with Rietveld structure refinement. Using a 2.7 g sample it was possible to make short data collections (3 h) at each temperature at intervals of 50° from 50 to700°C and locate the onset of cation exchange. Above 700°C the amphibole decomposes rapidly and so only an on-heating dataset was collected. Unit-cell parameters increase smoothly upon heating, with no discontinuities evident. Site occupancies of M(l), M(2) and M(3) sites were refined from site-scattering values. The initial XNi values of M(l), M(2) and M(3) sites, corresponding to the synthesis temperature of 750°C, are 0.57(1), 0.34(1) and 0.68(2), respectively. Above 400°C, there is initial ordering whereby thermal annealing allows the disordered Mg-Ni distribution of the quenched synthesis product to adjust to be closer to those appropriate for lower temperatures of the heating sequence. This ordering involves the exchange of Mg and Ni between M(l) and M(2), with no significant change in M(3) occupancy. At 700°C, XNi values of the M(l), M(2) and M(3) sites are 0.64(1), 0.27(1) and 0.69(2), respectively. No disordering was observed, due to the short duration of the high-temperature data collections and decomposition at 750°C. The results of this study indicate that divalent cations exchange between octahedral sites in amphiboles in a matter of hours.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...