ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2014-11-12
    Description: Hyperspectral images are of increasing importance in remote sensing applications. Imaging spectrometers provide semi-continuous spectra that can be used for physics based surface cover material identification and quantification. Preceding radiometric calibrations serve as a basis for the transformation of measured signals into physics based units such as radiance. Pushbroom sensors collect incident radiation by at least one detector array utilizing the photoelectric effect. Temporal variations of the detector characteristics that differ with foregoing radiometric calibration cause visually perceptible along-track stripes in the at-sensor radiance data that aggravate succeeding image-based analyses. Especially, variations of the thermally induced dark current dominate and have to be reduced. In this work, a new approach is presented that efficiently reduces dark current related stripe noise. It integrates an across-effect gradient minimization principle. The performance has been evaluated using artificially degraded whiskbroom (reference) and real pushbroom acquisitions from EO-1 Hyperion and AISA DUAL that are significantly covered by stripe noise. A set of quality indicators has been used for the accuracy assessment. They clearly show that the new approach outperforms a limited set of tested state-of-the-art approaches and achieves a very high accuracy related to ground-truth for selected tests. It may substitute recent algorithms in the Reduction of Miscalibration Effects (ROME) framework that is broadly used to reduce radiometric miscalibrations of pushbroom data takes.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-22
    Description: Photosynthesis simulations by terrestrial biosphere models are usually based on the Farquhar's model, in which the maximum rate of carboxylation ( V cmax ) is a key control parameter of photosynthetic capacity. Even though V cmax is known to vary substantially in space and time in response to environmental controls, it is typically parameterized in models with tabulated values associated to plant functional types. Remote sensing can be used to produce a spatially-continuous and temporally-resolved view on photosynthetic efficiency, but traditional vegetation observations based on spectral reflectance lack a direct link to plant photochemical processes. Alternatively, recent space-borne measurements of sun-induced chlorophyll fluorescence (SIF) can offer an observational constraint on photosynthesis simulations. Here, we show that top-of-canopy SIF measurements from space are sensitive to V cmax at the ecosystem level, and present an approach to invert V cmax from SIF data. We use the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) balance model to derive empirical relationships between seasonal V cmax and SIF which are used to solve the inverse problem. We evaluate our V cmax estimation method at six agricultural flux tower sites in the midwestern US using spaced-based SIF retrievals. Our V cmax estimates agree well with literature values for corn and soybean plants (average values of 37 and 101 μ mol m −2 s −1 , respectively) and show plausible seasonal patterns. The effect of the updated seasonally-varying V cmax parameterization on simulated GPP is tested by comparing to simulations with fixed V cmax values. Validation against flux tower observations demonstrate that simulations of GPP and light-use efficiency improve significantly when our time-resolved V cmax estimates from SIF are used, with R 2 for GPP comparisons increasing from 0.85 to 0.93, and for light-use efficiency from 0.44 to 0.83. Our results support the use of space-based SIF data as a proxy for photosynthetic capacity and suggest the potential for global, time-resolved estimates of V cmax . This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...