ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-01
    Description: A new inverse numerical modeling method is used to constrain the environmental parameters (e.g., relative-sea-level, sediment-supply, and wave climate histories) that control stratigraphic architecture in wave-dominated shallow-marine deposits. The method links a "process-response" forward stratigraphic model that simulates wave and storm processes (BARSIM) to a combination of inverse methods formulated in a Bayesian framework that allows full characterization of uncertainties. This method is applied for the first time to a real geologic dataset, collected at outcrop from two shoreface-shelf parasequences in the Aberdeen Member, Blackhawk Formation of the Book Cliffs, east-central Utah, USA. The environmental parameters that controlled the observed stratigraphic architecture are quantified, and key aspects of stratigraphic architecture are successfully predicted from limited data. Stratigraphic architecture at parasequence-stacking and intra-parasequence scales was driven principally by relative sea level (varying by up to about 55 m) and sediment supply (varying by up to 70 m2/yr), whose interplay determines the shoreline trajectory. Within zones of distinctive shoreline trajectory, variations in wave climate (of up to about 3 m in fairweather-wave height) controlled superimposed variations in sandstone and shale content (e.g., the development of upward-coarsening and upward-fining bedsets). The modeling results closely match the observed stratigraphic architecture, but their quality is limited by: (1) the formulation and assumptions of the forward-modeling algorithms, and (2) the observed data distribution and quality, which provide poor age constraint.
    Print ISSN: 1527-1404
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-01
    Description: The upper part of the Almond Formation records the overall retreat of a wave-dominated shoreline and associated lagoons or bays. Exposures of these strata on the eastern flank of the Rock Springs Uplift, Wyoming, U.S.A., enable analysis of their stratigraphic architectures along sections oriented oblique to depositional strike. The upper Almond Formation comprises at least nine vertically stacked regressive-transgressive cycles. The regressive component of each cycle consists of thick (up to 22 m), laterally continuous wave-dominated shoreface and overlying coastal-plain deposits that occur in paleoseaward locations and have abrupt ( 〈 400 m) paleolandward pinchouts. The transgressive component of each cycle consists of one or more bay-fill successions that occur in paleolandward locations and gradually thin in a paleoseaward direction. Transgressive bay-fill deposits in each cycle are thick (up to 18 m) and associated with preservation of surfaces that record, in progressively paleoseaward locations: initiation of a lagoon or bay (transgressive surface), erosional retreat of tidal-inlet channels (tidal ravinement surface) and the shoreface (wave ravinement surface), and marine flooding (marine flooding surface). This architecture records regression of a strandplain or wave-dominated delta, and subsequent transgression of a barrier island and spit with associated lagoon or bay. The occurrence of such thick and fully preserved bay-fill successions indicates that accretionary transgressive shoreline trajectories were developed. Strongly-aggradational-to-weakly-retrogradational stacking of successive regressive-transgressive cycles results in a layered stratigraphic architecture, with laterally continuous shoreface sandstone layers interbedded with bay-fill shale layers. Shoreface sandstones layers pinch out up-dip abruptly ( 〈 400 m) into bay-fill shales and have limited vertical connectivity. Sandstones within bay-fill and coastal-plain deposits occur as small, laterally discontinuous bodies of variable geometry and connectivity. However, these sandstones may provide additional connectivity where they erode through bay-fill shales between two shoreface sandstone layers.
    Print ISSN: 1527-1404
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-05-01
    Description: Fluviodeltaic stratigraphic architecture and its impact on fluid flow have been characterized using a high-resolution, three-dimensional, reservoir-scale model of an outcrop analog from the Upper Cretaceous Ferron Sandstone Member of central Utah. The model contains two parasequence sets (delta complexes), each with five or six parasequences, separated by an interval of coastal plain strata. Each parasequence contains one or two laterally offset teardrop-shaped delta lobes that are 6 to 12 km (4-7 mi) long, 3 to 9 km (2-6 mi) wide, 5 to 29 m (16-95 ft) thick, and have aspect ratios (width/length) of 0.4 to 0.8. Delta lobes have a wide range of azimuthal orientations (120{degrees}) around an overall east-northeastward progradation direction. In plan view, delta lobes in successive parasequences exhibit large (as much as 91{degrees}) clockwise and counterclockwise rotations in progradation direction, which are attributed to autogenic lobe switching. In cross-sectional view, parasequence stacking is strongly progradational, but a small component of aggradation or downstepping between parasequences reflects relative sea level fluctuations. We use flow simulations to characterize the impact of this heterogeneity on production in terms of the sweep efficiency, which is controlled by (1) the continuity, orientation, and permeability of channel-fill sand bodies; (2) the vertical permeability of distal delta-front heteroliths; (3) the direction of sweep relative to the orientation of channel-fill and delta-lobe sand bodies; and (4) well spacing. Distributary channel-fill sand bodies terminate at the apex of genetically related delta lobes and provide limited sand body connectivity. In contrast, fluvial channel-fill sand bodies cut into, and connect, multiple delta-lobe sand bodies. Low, but non-zero, vertical permeability within distal delta-front heteroliths also provides connectivity between successive delta-lobe sand bodies.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-03-01
    Description: The sequence stratigraphic architectures of shallow-marine deposits in the upper Cretaceous Star Point Sandstone are analyzed over a large (c. 100 km), nearly continuous outcrop section aligned oblique to depositional strike. The unit consists of five parasequences that predominantly comprise wave-dominated shoreface-shelf deposits. Two parasequences contain riverdominated delta-front deposits locally. Within each parasequence, wave-dominated shoreface-shelf deposits record 7-45 km of ESE- to ENE-directed progradation of a linear to moderately lobate shoreline that was supplied with sediment by longshore drift and subjected to strong offshore sediment transport by storms. Wave-dominated shoreface sandstones in each parasequence thin and wedge out over short distances ( 〈 500 m) at their updip pinchouts. Lower-shoreface sandstones in each parasequence split down dip into multiple, vertically stacked, upward-coarsening bedsets separated by tongues of offshore mudstones in distal locations associated with rapid deepening of antecedent paleobathymetry. River-dominated delta-front deposits define progradation of strongly lobate shorelines in an overall direction oriented subparallel to the regional shoreline trend and into locations sheltered from wave energy. These progradation directions are consistent with deflection of the deltas by wave-driven longshore currents. The arrangement of parasequences in the Star Point Sandstone defines an overall concave-landward shoreline trajectory, with decreasing progradation and increasing aggradation through time. Along-strike variations in this trajectory pattern reflect increased tectonic subsidence towards the north combined with highly localized, large-volume, fluvial sediment supply near the northwestern limit of the study area during deposition of an areally extensive (〉 800 km2) river-dominated delta-front complex (Panther Tongue). This highly focused fluvial sediment flux probably occurred via a structurally controlled sediment entry point between two active thrusts.
    Print ISSN: 1527-1404
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-05-01
    Description: The Pereriv Suite reservoir in the Azeri culmination of the ACG Oilfield is characterized by laterally continuous layers of variable net-to-gross (NTG) ratio deposited in a channel-dominated, fluvio-deltaic environment. The reservoir is being developed by down-dip water injection, with up-dip gas injection on the more steeply dipping central north flank. We use high-resolution models derived from outcrop analogue and subsurface data to demonstrate that four key sedimentological heterogeneities control recovery in both oil-water and gas-oil displacements: (1) local variations in NTG within low NTG ( 85%) layers; (3) sinuosity and (4) stacking pattern of channel-fill sandbodies in low NTG layers. The first three heterogeneities control sandbody connectivity; the fourth controls sweep efficiency in the connected sandbodies. Two further heterogeneities control recovery in gas-oil displacements in high NTG layers: (5) vertical-to-horizontal permeability ratio of channel-fill sandbodies and (6) mud clast lags at channel bases. Models which omit these small-scale features predict that sedimentological heterogeneity has little impact on water-oil or gas-oil displacements in high NTG layers, but fail to capture the effect of heterogeneity on the gravity stability of the gas-oil displacement, which significantly impacts on recovery.
    Print ISSN: 1354-0793
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2014-12-01
    Description: Forward seismic modeling of outcrop analogs has been used to characterize the seismic expression of clinoforms in different deltaic depositional environments, and thus constrain uncertainty in interpretation of intra-reservoir clinoforms imaged in seismic data from the Troll field, Norwegian North Sea. Three outcrop analogs from the Cretaceous Western Interior seaway, United States, were studied to quantify the geometry, distribution, and lithologic character of clinoforms in fluvial-dominated and mixed-influence deltaic deposits. Outcrop-derived geometric data were calibrated to sedimentological and petrophysical data from the Krossfjord and Fensfjord Formations in the Troll field, and then used to create a suite of forward seismic models for comparison with real seismic reflection data from the Troll field. Clinoforms were imaged in the forward seismic models in which they were (1) spaced wider than the tuning thickness (〉10 m [〉33 ft]); (2) marked by pronounced interfingering of facies associations with different acoustic properties; and/or (3) lined by relatively thick (〉50 cm [〉20 in.]) carbonate-cemented layers. However, where clinothems are thinner than the vertical resolution limit of seismic data, destructive interference occurred creating misleading geometrical relationships. Furthermore, our ability to image clinoforms is dependent on (1) the frequency of the seismic wavelet; (2) the overburden velocity; and/or (3) the acoustic impedance contrast at the boundary between the overburden and the clinoform-bearing target. The established methodology has allowed characterization of deltaic clinoformal architectures in reservoir seismic data from the Troll field, and has facilitated a more robust interpretation by bridging the critical gap in resolution between well and seismic data.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-01
    Description: Understanding the factors controlling the development of accommodation above collapsing salt diapirs and their influence on reservoir distribution is critical in reducing exploration risk in salt-influenced sedimentary basins. In this study, we use an integrated subsurface data set (three-dimensional and two-dimensional seismic reflection, wire-line-log, core, and biostratigraphic data) from the Upper Jurassic of the Cod terrace, Norwegian North Sea, to understand the influence of rifting on accommodation creation and shallow-marine deposition during the initial-stage collapse of salt diapirs. We demonstrate that rifting resulted in the rise and fall of salt diapirs, and the formation of supra-diapir minibasin-style depocenters that became sites for deposition and preservation of up to 500 m (1640 ft) thick net-transgressive shallow-marine sandstone reservoirs. Maximum thickness is recorded in the axis of minibasins with a reduction in thickness of up to 65% noted on their flanks. The stratigraphic architecture of individual minibasins is variable. Proximal-to-distal facies variations from shoreface to offshore shelf and commensurate changes in reservoir quality occur over scales larger than individual minibasins. These deposits contain large sand volumes, and are not confined to areas of localized sandstone subcrop. In combination, these features suggest that the minibasins formed a linked network supplied by regional sediment-routing systems. The results of this study provide a new tectono-stratigraphic model for prediction of reservoir presence, thickness, and continuity in diapir-collapse minibasins along salt walls in the Central North Sea, and in other less mature, data-poor basins where reservoirs have been identified in depocenters above salt walls.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-05-01
    Description: Fluviodeltaic stratigraphic architecture and its impact on fluid flow have been characterized using a high-resolution, three-dimensional, reservoir-scale model of an outcrop analog from the Upper Cretaceous Ferron Sandstone Member of central Utah. The model contains two parasequence sets (delta complexes), each with five or six parasequences, separated by an interval of coastal plain strata. Each parasequence contains one or two laterally offset teardrop-shaped delta lobes that are 6 to 12 km (4–7 mi) long, 3 to 9 km (2–6 mi) wide, 5 to 29 m (16–95 ft) thick, and have aspect ratios (width/length) of 0.4 to 0.8. Delta lobes have a wide range of azimuthal orientations (120°) around an overall east-northeastward progradation direction. In plan view, delta lobes in successive parasequences exhibit large (as much as 91°) clockwise and counterclockwise rotations in progradation direction, which are attributed to autogenic lobe switching. In cross-sectional view, parasequence stacking is strongly progradational, but a small component of aggradation or downstepping between parasequences reflects relative sea level fluctuations. We use flow simulations to characterize the impact of this heterogeneity on production in terms of the sweep efficiency, which is controlled by (1) the continuity, orientation, and permeability of channel-fill sand bodies; (2) the vertical permeability of distal delta-front heteroliths; (3) the direction of sweep relative to the orientation of channel-fill and delta-lobe sand bodies; and (4) well spacing. Distributary channel-fill sand bodies terminate at the apex of genetically related delta lobes and provide limited sand body connectivity. In contrast, fluvial channel-fill sand bodies cut into, and connect, multiple delta-lobe sand bodies. Low, but non-zero, vertical permeability within distal delta-front heteroliths also provides connectivity between successive delta-lobe sand bodies. Peter Deveugle is an earth scientist with Chevron Energy Technology Company based in Perth, Australia. He holds an M.Eng. degree in mining engineering from the Katholieke Universiteit Leuven, Belgium, an M.Sc. degree in petroleum geoscience from the Institut Français du Petrole, Paris, and a Ph.D. in earth science from Imperial College, London. His current interests lie in reservoir modeling and its applications to exploration and development geology and engineering. Matthew Jackson is a senior lecturer in reservoir engineering in the Department of Earth Science and Engineering, Imperial College, London. He holds a B.S. degree in physics from Imperial College and a Ph.D. in geologic fluid mechanics from the University of Liverpool. His research interests include a simulation of multiphase flow through porous media, representation of geologic heterogeneity in simulation models, and downhole monitoring and control in instrumented wells. Gary Hampson is a senior lecturer in sedimentary geology in the Department of Earth Science and Engineering, Imperial College, London. He holds a B.A. degree in natural sciences from the University of Cambridge and a Ph.D. in sedimentology and sequence stratigraphy from the University of Liverpool. His research interests lie in the understanding of siliciclastic depositional systems and their preserved stratigraphy and in applying this knowledge to reservoir characterization. Michael Farrell is a geophysicist with more than 30 yr of industry experience with Mobil and Exxonmobil. During that time, he worked on activities that ranged from seismic interpretation and sequence stratigraphy to rock physics and seismic inversion. He currently is a consultant with Third Coast Geoscience working on seismic reservoir characterization of siliciclastic systems. Anthony Sprague is a senior research associate at ExxonMobil Upstream Research Company in Houston, Texas. His research interests include sequence stratigraphy of deep-water, deltaic, and fluvial depositional systems. He holds a B.Sc. degree in geology and geochemistry from the University of Cape Town and a Ph.D. in sedimentary geology from the University of Texas at Dallas. Jonathan Stewart is a geological associate at ExxonMobil Development Company in Houston, Texas. He previously worked at ExxonMobil Upstream Research Company, where his research interests included understanding reservoir performance in deep-water reservoirs using insights from historical production data, three-dimensional and four-dimensional seismic data, Quaternary and outcrop analogs. He holds an M.A. degree in earth sciences and a D.Phil. degree in geophysics from Oxford University. Craig Calvert is a senior reservoir geoscience consultant at ExxonMobil Upstream Research Company in Houston, Texas. He holds a Ph.D. from Texas A&M University in the earth sciences and has worked in research at ExxonMobil since graduating in 1981. His research interests broadly address reservoir characterization, modeling, and performance prediction.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-04-01
    Description: Multiple techniques are available to construct three-dimensional reservoir models. This study uses comparative analysis to test the impact of applying four commonly used stochastic modeling techniques to capture geologic heterogeneity and fluid-flow behavior in fluvial-dominated deltaic reservoirs of complex facies architecture: (1) sequential indicator simulation; (2) object-based modeling; (3) multiple-point statistics (MPS); and (4) spectral component geologic modeling. A reference for comparison is provided by a high-resolution model of an outcrop analog that captures facies architecture at the scale of parasequences, delta lobes, and facies-association belts. A sparse, pseudosubsurface data set extracted from the reference model is used to condition models constructed using each stochastic reservoir modeling technique. Models constructed using all four algorithms fail to match the facies-association proportions of the reference model because they are conditioned to well data that sample a small, unrepresentative volume of the reservoir. Simulated sweep efficiency is determined by the degree to which the modeling algorithms reproduce two aspects of facies architecture that control sand-body connectivity: (1) the abundance, continuity, and orientation of channelized fluvial sand bodies; and (2) the lateral continuity of barriers to vertical flow associated with flooding surfaces. The MPS algorithm performs best in this regard. However, the static and dynamic performance of the models (as measured against facies-association proportions, facies architecture, and recovery factor of the reference model) is more dependent on the quality and quantity of conditioning data and on the interpreted geologic scenario(s) implicit in the models than on the choice of modeling technique.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...