ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2013-02-27
    Description: [1]  Geologists have long known that young normal faults are an important structural element of the Andean Coastal Cordillera, but their relationship to the subduction seismic cycle is still unclear. Some of the largest aftershocks of the 2010 M w  8.8 Maule earthquake in central Chile were nucleated on upper plate normal faults, including the M w  6.9 and 7.0 events of the Pichilemu earthquake sequence. We use the available coseismic GPS displacements, moment tensor sums, and slip distribution models for the Maule earthquake to compute the static strain and stress fields imposed on the upper plate by slip on the subduction interface. The extensional strains calculated from coseismic GPS and from a moment tensor sum of the Pichilemu events have similar orientations and orders of magnitude. The normal Coulomb stress increment (CSI) on the Pichilemu fault has maximum positive stresses as high as 4.9 MPa. Regionally, the Maule event produced a semi-elliptical, radial pattern of static extension and deviatoric tension (CSI 〉 1.5 MPa) along the Coastal Cordillera enclosing the rupture area. This elliptical pattern mimics the trends of the major upper-crustal structures. The static deformation field produced by a great subduction earthquake is an effective mechanism for generating permanent extension above the seismogenic zone, reactivating suitably oriented, long-lived normal faults. We suggest that the semi-elliptical outline of the first-order structures along the Coastal Cordillera may define the location of a characteristic, long-lived megathrust segment. This observation implies a persistence at least over the Quaternary of great subduction ruptures along the Maule segment.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-26
    Description: We have undertaken the first paleoseismological study on an upper plate fault in Chile. The selected structure was the Mejillones Fault, which is marked by a conspicuous fault-scarp. Using cosmogenic 10Be and OSL dating and detailed sedimentary logging of trenches, we have constrained the abandonment of two alluvial surfaces by fault activity at ca. 35 ka and ca.14 ka. Based on stratigraphic observation we characterized the fault evolution in four intervals over the last ca. 35 ka. During the first three intervals the fault had a steady slip rate of 0.61 ± 0.26 m/ka. The fourth interval is delineated by the last vertical fault slip and the accumulation of un-deformed hillslope deposits after ca. 3.3 ka and has a slip rate of 0.22 ± 0.06 m/ka. The younger surface abandonment was caused by two Mw ∼ 7 paleoearthquakes with a recurrence interval of 5.0 ± 3.5 ka. The third interval is characterized by the interaction of hillslope deposits and aseismic slip and/or centimeter scale seismic slip events. At ca. 3.5 ka, a last large (Mw ∼ 6.6) earthquake took place. The recurrence intervals of large (Mw 〉 8.5) subduction earthquakes do not appear to be the same as the recurrence intervals of the Mw ∼ 7 events on the upper plate Mejillones Fault.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...