ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (3)
  • 1
    Publication Date: 2011-09-01
    Print ISSN: 0377-0273
    Electronic ISSN: 1872-6097
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-29
    Description: The behaviour of seismogenic faults is generally investigated under the assumption that they are subject to a constant strain rate. We consider the effect of a slowly variable strain rate on the recurrence times of earthquakes generated by a single fault. To this aim a spring-block system is employed as a low-order analog of the fault. Two cases are considered: a sinusoidal oscillation in the driver velocity and a monotonic change from one velocity value to another. In the first case, a study of the orbit of the system in the state space suggests that the seismic activity of the equivalent fault is organized into cycles that include several earthquakes and repeat periodically. Within each cycle the recurrence times oscillate about an average value equal to the recurrence period for constant strain rate. In the second case, the recurrence time changes gradually from the value before the transition to the value following it. Asymptotic solutions are also given, approximating the case when the amplitude of the oscillation or of the monotonic change is much smaller than the average driver velocity and the period of oscillation or the duration of the transition is much longer than the recurrence times of block motions. If the system is not isolated but is subject to perturbations in stress, the perturbation anticipates or delays the subsequent earthquake. The effects of stress perturbations in the two cases of strain rate oscillations and monotonic change are considered.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-11
    Description: We present here the results from dynamical and thermal models that describe a channeled lava flow as it cools by radiation. In particular, the effects of power-law rheology and of the presence of bends in the flow are considered, as well as the formation of surface crust and lava tubes. On the basis of the thermal models, we analyze the assumptions implicit in the currently used formulae for evaluation of lava flow rates from satellite thermal imagery. Assuming a steady flow down an inclined rectangular channel, we solve numerically the equation of motion by the finite-volume method and a classical iterative solution. Our results show that the use of power-law rheology results in relevant differences in the average velocity and volume flow rate with respect to Newtonian rheology. Crust formation is strongly influenced by power-law rheology; in particular, the growth rate and the velocity profile inside the channel are strongly modified. In addition, channel curvature affects the flow dynamics and surface morphology. The size and shape of surface solid plates are controlled by competition between the shear stress and the crust yield strength: the degree of crust cover of the channel is studied as a function of the curvature. Simple formulae are currently used to relate the lava flow rate to the energy radiated by the lava flow as inferred from satellite thermal imagery. Such formulae are based on a specific model, and consequently, their validity is subject to the model assumptions. An analysis of these assumptions reveals that the current use of such formulae is not consistent with the model.
    Description: Published
    Description: 510-520
    Description: JCR Journal
    Description: open
    Keywords: Rheology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...