ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-12-01
    Print ISSN: 1542-7390
    Electronic ISSN: 1542-7390
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2018-09-01
    Print ISSN: 1542-7390
    Electronic ISSN: 1542-7390
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The space radiation transport code, HZETRN, has been used extensively for research, vehicle design optimization, risk analysis, and related applications. One of the simplifying features of the HZETRN transport formalism is the straight-ahead approximation, wherein all particles are assumed to travel along a common axis. This reduces the governing equation to one spatial dimension allowing enormous simplification and highly efficient computational procedures to be implemented. Despite the physical simplifications, the HZETRN code is widely used for space applications and has been found to agree well with fully 3D Monte Carlo simulations in many circumstances. Recent work has focused on the development of 3D transport corrections for neutrons and light ions (Z 〈 2) for which the straight-ahead approximation is known to be less accurate. Within the development of 3D corrections, well-defined convergence criteria have been considered, allowing approximation errors at each stage in model development to be quantified. The present level of development assumes the neutron cross sections have an isotropic component treated within N explicit angular directions and a forward component represented by the straight-ahead approximation. The N = 1 solution refers to the straight-ahead treatment, while N = 2 represents the bi-directional model in current use for engineering design. The figure below shows neutrons, protons, and alphas for various values of N at locations in an aluminum sphere exposed to a solar particle event (SPE) spectrum. The neutron fluence converges quickly in simple geometry with N 〉 14 directions. The improved code, 3DHZETRN, transports neutrons, light ions, and heavy ions under space-like boundary conditions through general geometry while maintaining a high degree of computational efficiency. A brief overview of the 3D transport formalism for neutrons and light ions is given, and extensive benchmarking results with the Monte Carlo codes Geant4, FLUKA, and PHITS are provided for a variety of boundary conditions and geometries. Improvements provided by the 3D corrections are made clear in the comparisons. Developments needed to connect 3DHZETRN to vehicle design and optimization studies will be discussed. Future theoretical development will relax the forward plus isotropic interaction assumption to more general angular dependence.
    Keywords: Spacecraft Design, Testing and Performance; Space Radiation
    Type: NF1676L-19867 , Space Radiation Investigators Workshop; Jan 12, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Albedo (precipitating/splash) electrons, created by galactic cosmic rays (GCR) interaction with the upper atmosphere move upwards away from the surface of the earth. In the past validation work these particles were often considered to have negligible contribution to astronaut radiation exposure on the International Space Station (ISS). Estimates of astronaut exposure based on the available Computer Aided Design (CAD) models of ISS consistently underestimated measurements onboard ISS when the contribution of albedo particles to exposure were neglected. Recent measurements of high energy electrons outside ISS Japan Experimental Module (JEM) using Exposed Facility (EF), Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP) and Standard DOse Monitor (SDOM), indicates the presence of high energy electrons at ISS altitude. In this presentation the status of these energetic electrons is reviewed and mechanism for the creation of these particles inside/outside South Atlantic Anomaly (SAA) region explained. In addition, limited dosimetric evaluation of these electrons at 600 MeV and 10 GeV is presented.
    Keywords: Space Radiation
    Type: NF1676L-22270 , Workshops on Radiation Monitoring for the International Space Station (WRMISS); Sep 08, 2015 - Sep 10, 2015; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment is to attempt to reproduce the unmodified, external GCR spectrum at a ground based accelerator. A possibly better approach would use the modified, shielded tissue spectrum, to select accelerator beams impinging on biological targets. NASA plans for implementation of a GCR simulator at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory will be discussed.
    Keywords: Space Radiation
    Type: NF1676L-20822 , Annual Meeting of the Radiation Research Society; Sep 19, 2015 - Sep 22, 2015; Weston, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: An international collaboration on Galactic Cosmic Ray (GCR) simulation is being formed to make recommendations on how to best simulate the GCR spectrum at ground based accelerators. The external GCR spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The anticipated outcome of these and other studies may be a report or journal article, written by an international collaboration, making accelerator beam recommendations for GCR simulation. This poster describes the status of GCR simulation at the NASA Space Radiation Laboratory and encourages others to join the collaboration.
    Keywords: Astrophysics; Space Radiation
    Type: NF1676L-20445 , International Congress of Radiation Research (ICRR 2015); May 25, 2015 - May 29, 2015; Kyoto; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The results of these workshops will be discussed in this paper.
    Keywords: Space Radiation
    Type: NF1676L-20446 , International Workshop on Space Radiation Research (IWSRR); May 22, 2015 - May 24, 2015; Osaka; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Exposure to galactic cosmic rays (GCR) on long duration deep space missions presents a serious health risk to astronauts, with large uncertainties connected to the biological response. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment in the laboratory are discussed. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at the NASA Space Radiation Laboratory (NSRL) limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is within physical uncertainties, allowing a single reference field for deep space missions to be defined. Third, an approach for simulating the reference field at NSRL is presented. The approach allows for the linear energy transfer (LET) spectrum of the reference field to be approximately represented with discrete ion and energy beams and implicitly maintains a reasonably accurate charge spectrum (or, average quality factor). Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the proposed strategy are discussed in this context.
    Keywords: Aerospace Medicine; Space Radiation
    Type: NF1676L-19846 , Annual Space Radiation Investigators'' Workshop (2015 Space Rad IWS); Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-18
    Description: This paper is the third in a series of comparisons of American (NASA) and Russian (ROSCOSMOS) space radiation calculations. The present work focuses on calculation of fluxes of galactic cosmic rays (GCR), which are a constant source of radiation that constitutes one of the major hazards during deep space exploration missions for both astronauts/cosmonauts and hardware. In this work, commonly used GCR models are compared with recently published measurements of cosmic ray Hydrogen, Helium, and the Boron-to-Carbon ratio from the Alpha Magnetic Spectrometer (AMS). All of the models were developed and calibrated prior to the publication of the AMS data, therefore this an opportunity to validate the models against an independent data set.
    Keywords: Space Radiation
    Type: NF1676L-29349 , Life Sciences in Space Research (ISSN 2214-5524) (e-ISSN 2214-5532); 187; 64-71
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...