ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (2)
  • 1
    Publication Date: 2023-06-08
    Description: The Dapingian to Darriwilian Kanosh Formation is one of the most fossiliferous units of the Pogonip Group (Great Basin, western US). It records a critical phase of the so-called Great Ordovician Biodiversification Event (GOBE) during which many marine clades diversified on lower systematic levels. However, a comprehensive palaeoecological analysis has not been presented for this unit so far. Based on newly collected material from three sections in the type area at Ibex, we reconstruct benthic marine communities, analyse diversity patterns, and discuss its significance for the GOBE. We find no differences in species’ composition across the formation with respect to brachiopods. Benthic assemblages are dominated by Shoshonorthis michaelis, alongside the presence of Anomalorthis lonensis and Anomalorthis utahensis across the whole unit. Trilobites show a more pronounced facies restriction with species of Kanoshia and Pseudomera being observed in more proximal limestone whereas Bathyurellus and Pseudoolenoides occur in fine-grained, low-energy deposits. The skeletal limestone also records abundant bioclasts of bryozoans, echinoderms, and receptaculitids, suggesting an ecologically diverse and tiered community being present in the inner shelf zone. However, most of these groups are not particularly diverse in terms of species richness. This implies that principle establishment of typical members of the “Palaeozoic Fauna” is not associated with a local diversification of clades. The comparably low habitat diversity of the Kanosh Fauna likely reflects environmental constraints such as high rates of siliclastic input. Additionally, these mainly Dapingian communities still represent a base-line fauna before the principal diversification took place.
    Description: Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung (3498)
    Keywords: ddc:560 ; Palaeoecology ; Middle Ordovician ; Diversification ; Benthos
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-12-16
    Description: Melting and vaporization of rocks in impact cratering is mostly attributed to be a consequence of shock compression. However, other mechanism such as plastic work and decompression by structural uplift also contribute to melt production. In this study we expand the commonly used method to determine shock‐induced melting in numerical models from the peak shock pressure by a new approach to account for additional heating due plastic work and internal friction. We compare our new approach with the straight‐forward method to simply quantify melting from the temperature relative to the solidus temperature at any arbitrary point in time in the course of crater formation. This much simpler method does account for plastic work but suffers from reduced accuracy due to numerical diffusion inherent to ongoing advection in impact crater formation models. We demonstrate that our new approach is more accurate than previous methods in particular for quantitative determination of impact melt distribution in final crater structures. In addition, we assess the contribution of plastic work to the overall melt volume and find, that melting is dominated by plastic work for impacts at velocities smaller than 7.5–12.5 km/s in rocks, depending on the material strength. At higher impact velocities shock compression is the dominating mechanism for melting. Here, the conventional peak shock pressure method provides similar results compared with our new model. Our method serves as a powerful tool to accurately determine impact‐induced heating in particular at relatively low‐velocity impacts.
    Description: Plain Language Summary: During the collision of cosmic bodies such as planets and asteroids on various scales, the involved material is heated such that melting or vaporization can occur. The vast amount of heat is considered to be generated during shock compression, however recent studies found that plastic deformation during decompression also contribute to the heating process. In this study, we introduce a new approach to quantify impact‐induced melting more accurately under consideration of the latter heating mechanisms. We demonstrate that our approach is more accurate than previous attempts and quantify the contribution from plastic work on impact‐induced melting. We systematically study the effect of impact velocity and material strength on melt production and find, that it is dominated by plastic work for impact velocities up to 7.5–12.5 km/s in rocks, depending on the material strength.
    Description: Key Points: We propose an improved method to quantify impact‐induced melt production for rocks. We quantify impact‐induced melt production and separate between heating due to shock compression and plastic work. Melting due to frictional heating (plastic work) dominates over shock melting for impact velocities below 7–13 km/s depending on strength.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Japan Society for the Promotion of Science London http://dx.doi.org/10.13039/501100000646
    Description: http://www.isale-code.de/redmine/projects/isale/wiki/Terms_of_use
    Description: https://doi.org/10.35003/HVTJQD
    Keywords: ddc:550.724 ; impact heating ; numerical modeling ; impact melt ; melt quantification
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...