ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2020-2024  (4)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2024-03-15
    Beschreibung: Seawater acidification (SA) has been documented to either inhibit, enhance, or result in no effect on marine primary productivity (PP). In order to examine the effects of SA in changing environments, we investigated the influences of SA (a decrease of 0.4 pHtotal units with corresponding CO2 concentrations in the range of 22.0–39.7 µM) on PP through deck-incubation experiments at 101 stations in the Taiwan Strait and the South China Sea, including the continental shelf and slope, as well as the deep-water basin. The daily primary productivities in surface seawater under incident solar radiation ranged from 17–306 µg C/µg Chl a/d, with the responses of PP to SA being region-dependent and the SA-induced changes varying from −88 % (inhibition) to 57 % (enhancement). The SA treatment stimulated PP in surface waters of coastal, estuarine, and shelf waters but suppressed it in the South China Sea basin. Such SA-induced changes in PP were significantly related to in situ pH and solar radiation in surface seawater but negatively related to salinity changes. Our results indicate that phytoplankton cells are more vulnerable to a pH drop in oligotrophic waters. Contrasting responses of phytoplankton productivity in different areas suggest that SA impacts on marine primary productivity are region-dependent and regulated by local environments.
    Schlagwort(e): Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Change; Chlorophyll a; Coast and continental shelf; Entire community; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Irradiance; Laboratory experiment; LATITUDE; LONGITUDE; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Primary production/Photosynthesis; Primary production of carbon per chlorophyll a; Salinity; Station label; Temperate; Temperature, water; Treatment; Type
    Materialart: Dataset
    Format: text/tab-separated-values, 6363 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-03-15
    Beschreibung: Increasing CO2 levels in the surface water of oceans are expected to decrease oceanic pH and lead to seawater acidification. The responses of macroalgaea to this acidification of coastal waters have been studied in detail; however, most reports have focused on the adult stage only, while ignoring other life cycle stages. In this study, the economically important seaweed species Pyropia yezoensis was cultured under two CO2 concentrations (ambient CO2: 400 μatm; elevated CO2: 1000 μatm) and two light intensities (low light intensity: 80 μmol photons/m**2 /s; and high light intensity: 240 μmol photons/m**2 /s). The effects on the growth and photosynthetic performance of P. yezoensis were explored at different life cycle stages. Relative growth rates were significantly elevated at the conchocelis stage under high light intensity and elevated CO2 concentration. Moreover, the Pmax of P. yezoensis was also increased under high light intensity. However, this positive effect inversed at the thallus stage. The relative growth rate, relative electron transport rate (rETR), and net photosynthetic rate decreased at the thallus stage in response to high CO2 concentration. Under low light intensity, elevated CO2 concentration significantly increased the relative growth rates of conchocelis and thallus stages. These were 269% and 45% higher at elevated CO2 concentration compared with ambient CO2 concentrations, respectively. The Chl a and phycoerythrin levels were also higher under elevated CO2 level at the conchocelis stage. However, the rETR for the thallus stage was elevated under low light. This suggests that seawater acidification could positively affect algae at low light conditions (especially at the conchocelis stage). Different growth stages of P. yezoensis may respond differently to seawater acidification and changes of light intensity. Thalli growth stage, stocking density, and seawater depth should be considered in different areas to optimize the primary production of macroalgae.
    Schlagwort(e): Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyll a; Coast and continental shelf; Electron transport rate, relative; Electron transport rate, relative, standard deviation; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Irradiance; Laboratory experiment; Life stage; Light; Macroalgae; Maximum quantum yield of photosystem II; Net photosynthesis rate, oxygen; Net photosynthesis rate, oxygen, per chlorophyll a; Net photosynthesis rate, standard deviation; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Phycocyanin; Phycoerythrin; Plantae; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Proteins; Proteins, total; Pyropia yezoensis; Registration number of species; Replicate; Rhodophyta; Salinity; Single species; Species; Temperate; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Materialart: Dataset
    Format: text/tab-separated-values, 5536 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-03-15
    Beschreibung: Motility plays a critical role in algal survival and reproduction, with implications for aquatic ecosystem stability. However, the effect of elevated CO2 on marine, brackish and freshwater algal motility is unclear. Here we show, using laboratory microscale and field mesoscale experiments, that three typical phytoplankton species had decreased motility with increased CO2. Polar marine Microglena sp., euryhaline Dunaliella salina and freshwater Chlamydomonas reinhardtii were grown under different CO2 concentrations for 5 years. Long-term acclimated Microglena sp. showed substantially decreased photo-responses in all treatments, with a photophobic reaction affecting intracellular calcium concentration. Genes regulating flagellar movement were significantly downregulated (P 〈 0.05), alongside a significant increase in gene expression for flagellar shedding (P 〈 0.05). D. salina and C. reinhardtii showed similar results, suggesting that motility changes are common across flagellated species. As the flagella structure and bending mechanism are conserved from unicellular organisms to vertebrates, these results suggest that increasing surface water CO2 concentrations may affect flagellated cells from algae to fish.
    Schlagwort(e): Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Behaviour; Bicarbonate ion; Bicarbonate ion, standard error; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcium, flux; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard error; Chlamydomonas reinhardtii; Chlorophyta; Daily vertical migration; Dunaliella salina; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression; Gene name; Irradiance; Laboratory experiment; Laboratory strains; Microglena sp.; Move velocity; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen evolution, per chlorophyll a; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; Percentage; pH; pH, standard error; Phytoplankton; Plantae; Potentiometric; Potentiometric titration; Registration number of species; Respiration; Salinity; Single species; Species; Temperature, water; Time in days; Type; Uniform resource locator/link to reference
    Materialart: Dataset
    Format: text/tab-separated-values, 124767 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-03-15
    Beschreibung: Eutrophic coastal regions are highly productive and greatly influenced by human activities. Primary production supporting the coastal ecosystems is supposed to be affected by progressive ocean acidification driven by increasing CO2 emissions. In order to investigate the effects of high pCO2 (HC) on eutrophic plankton community structure and ecological functions, we employed 9 mesocosms and carried out an experiment under ambient (410 ppmv) and future high (1000 ppmv) atmospheric pCO2 conditions, using in situ plankton community in Wuyuan Bay, East China Sea. Our results showed that HC along with natural seawater temperature rise significantly boosted biomass of diatoms with decreased abundance of dinoflagellates in the late stage of the experiment, demonstrating that HC repressed the succession from diatoms to dinoflagellates, a phenomenon observed during algal blooms in the East China Sea. HC did not significantly influence the primary production or biogenic silica contents of the phytoplankton assemblages. However, the HC treatments increased the abundance of viruses and heterotrophic bacteria, reflecting a refueling of nutrients for phytoplankton growth from virus-mediated cell lysis and bacterial degradation of organic matters. Conclusively, our results suggest that increasing CO2 concentrations can modulate plankton structure including the succession of phytoplankton community and the abundance of viruses and bacteria in eutrophic coastal waters, which may lead to altered biogeochemical cycles of carbon and nutrients.
    Schlagwort(e): Ammonium; Aragonite saturation state; Bacteria; Bicarbonate ion; Biogenic silica; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chlorophyll a; Coast and continental shelf; Community composition and diversity; Day of experiment; Entire community; EXP; Experiment; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Mesocosm or benthocosm; Night period respiration, carbon; Nitrate; Nitrite; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Primary production, carbon assimilation; Primary production/Photosynthesis; Replicates; Respiration; Salinity; Silicate; Temperate; Temperature, water; Treatment; Type; Viral abundance; Wuyuan_Bay_OA
    Materialart: Dataset
    Format: text/tab-separated-values, 6225 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...