ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (6)
Collection
Language
Years
Year
  • 1
    Publication Date: 2023-08-09
    Description: East Antarctica is the keystone to Gondwana and is fundamental to the understanding of continental breakup and the distribution of continents since the Jurassic, with further implications for the formation of today’s oceans and ice sheets and evolution of climate. Analysis of multiple geophysical datasets in East Antarctica, including radio-echo sounding, potential fields and seismic datasets have revealed the distribution of sedimentary basins within East Antarctica. Differences in the morphology and orientation of sedimentary basins define lithospheric domains separated by basement-dominated regions. The basement highs are defined by multiscale linear features evident in gravity, bed topography and seismic tomography models. These boundaries, we suggest, indicate the margins of former continental blocks that were assembled in the Precambrian to form East Antarctica. Rheological contrasts at block margins controlled later deformation during Phanerozoic extension. First, the formation of variably-oriented sedimentary basins in the Devonian to Triassic is consistent with reactivation of prior architecture and the distribution of major basin-dominated regions is indicative of differences in lithospheric rheology and composition - warmer and compositionally more fertile lithosphere is prone to subsidence. Second, the basement highs are aligned with key features of Gondwana breakup in the Jurassic to Eocene including the Africa-Madagascar-Sri Lanka triple junction, the Kerguelen Plateau, the George V fracture zone of Australian-Antarctic basin and the Macquarie Ridge. We suggest that the differential lithospheric structure of East Antarctica including mantle, crust and basins led to the localisation of these features and fundamentally controlled the geometry of Gondwana breakup.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-08-31
    Description: We present a probabilistic approach to the inversion of surface wave dispersion data from glacial environments. This is intended to (i) assess non-linearity and non-uniqueness, and (ii) properly quantify resolution and trade-offs. For this, we use seismic data from Distributed Acoustic Sensing (DAS) experiments deployed on the Vatnajökull ice sheet located on Grímsvötn volcano in Iceland, and the Northeast Greenland Ice Stream (NEGIS). Our method is based on a regularisation-free Bayesian inference approach, implemented using a Hamiltonian Monte Carlo (HMC) algorithm. Exploiting derivative information for efficient sampling of high-dimensional model spaces, HMC approximates the posterior probability densities of all model parameters. Applied specifically to multi-mode surface wave dispersion measurements, HMC yields probabilistic models of 1-D anisotropic stratified media parameterised in terms of the P-wave velocities Vpv and Vph, the S-wave velocities Vsv and Vsh, the anisotropy parameter η, and density ρ. The benefits of this approach, not only from a glaciological perspective, include regularisation-free estimates of firn and ice properties, models that are not a priori biased by the exclusion of all parameters except S-wave speed, and some level of direct access to the vertical density profile.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-09-29
    Description: Reliable knowledge of ice discharge dynamics for the Greenland ice sheet via its ice streams is essential if we are to understand its stability under future climate scenarios as well as their dynamics in the past. Currently, active ice streams in Greenland have been well mapped using remote-sensing data while past ice-stream paths in what are now deglaciated regions can be reconstructed from the landforms they left behind. However, little is known about possible former and now defunct ice streams in areas still covered by ice. Here, we use radio-echo sounding data to decipher the regional ice-flow history of the northeastern Greenland ice sheet on the basis of its internal stratigraphy. Based on the same data set we also establish age-depth distributions in the ice stream and determine the physical properties of the ice, notably the distribution of anisotropy. By creating a three-dimensional reconstruction of time-equivalent horizons, we map folds deep below the surface that we then attribute to the deformation caused by now-extinct ice streams. We propose that locally this ancient ice-flow regime was much more focused and reached much farther inland than today’s and was deactivated when the main drainage system was reconfigured and relocated southwards. The insight that major ice streams in Greenland might start, shift or abruptly disappear will affect future approaches to understanding and modelling the response of Earth’s ice sheets to global warming. EGRIP radar consortium: Daniela Jansen, Steven Franke, Tobias Binder, Paul D. Bons, Dorthe Dahl-Jensen, Reinhard Drews, Graeme Eagles, Olaf Eisen, Reza Ershadi, Tamara Annina Gerber, Prasad Gogineni, Aslak Grinsted, Veit Helm, Angelika Humbert, Christine Hvidberg, David Lilien, Heinrich Miller, Charles O'Neill, John D. Paden, Nicholas Rathmann, Daniel Steinhage, Nicolas Stoll, Kyra Streng, Fernando Valero-Delgado, Ilka Weikusat, Julien Westhoff, Tun Jan Young, Ole Zeising
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-29
    Description: Reliable in situ surface mass balance (SMB) estimates in polar regions are scarce due to limited spatial and temporal data availability. This study aims at deriving automated and continuous specific SMB time series for fast-moving parts of ice sheets and shelves (flow velocity 〉 10 m a−1) by developing a combined global navigation satellite system (GNSS) reflectometry and refractometry (GNSS-RR) method. In situ snow density, snow water equivalent (SWE), and snow deposition or erosion are estimated simultaneously as an average over an area of several square meters and independently on weather conditions. The combined GNSS-RR method is validated and investigated regarding its applicability to a moving, high-latitude ice shelf. A combined GNSS-RR system was therefore installed in November 2021 on the Ekström ice shelf (flow velocity ≈ 150 m a−1) in Dronning Maud Land, Antarctica. The reflected and refracted GNSS observations from the site are post-processed to obtain snow accumulation (deposition and erosion), SWE, and snow density estimates with a 15 min temporal resolution. The results of the first 16 months of data show a high level of agreement with manual and automated reference observations from the same site. Snow accumulation, SWE, and density are derived with uncertainties of around 9 cm, 40 kg m−2 a−1, and 72 kg m−3, respectively. This pilot study forms the basis for extending observational networks with GNSS-RR capabilities, particularly in polar regions. Regional climate models, local snow modeling, and extensive remote sensing data products will profit from calibration and validation based on such in situ time series, especially if many such sensors will be deployed over larger regional scales.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Reviews of Geophysics, American Geophysical Union (AGU), 61(3), ISSN: 8755-1209
    Publication Date: 2023-10-09
    Description: Knowledge of Antarctica's sedimentary basins builds our understanding of the coupled evolution of tectonics, ice, ocean, and climate. Sedimentary basins have properties distinct from basement-dominated regions that impact ice-sheet dynamics, potentially influencing future ice-sheet change. Despite their importance, our knowledge of Antarctic sedimentary basins is restricted. Remoteness, the harsh environment, the overlying ice sheet, ice shelves, and sea ice all make fieldwork challenging. Nonetheless, in the past decade the geophysics community has made great progress in internationally coordinated data collection and compilation with parallel advances in data processing and analysis supporting a new insight into Antarctica's subglacial environment. Here, we summarize recent progress in understanding Antarctica's sedimentary basins. We review advances in the technical capability of radar, potential fields, seismic, and electromagnetic techniques to detect and characterize basins beneath ice and advances in integrated multi-data interpretation including machine-learning approaches. These new capabilities permit a continent-wide mapping of Antarctica's sedimentary basins and their characteristics, aiding definition of the tectonic development of the continent. Crucially, Antarctica's sedimentary basins interact with the overlying ice sheet through dynamic feedbacks that have the potential to contribute to rapid ice-sheet change. Looking ahead, future research directions include techniques to increase data coverage within logistical constraints, and resolving major knowledge gaps, including insufficient sampling of the ice-sheet bed and poor definition of subglacial basin structure and stratigraphy. Translating the knowledge of sedimentary basin processes into ice-sheet modeling studies is critical to underpin better capacity to predict future change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Earth Surface, American Geophysical Union (AGU), 128(10), ISSN: 2169-9003
    Publication Date: 2024-03-14
    Description: Radio Echo Sounding (RES) surveys conducted in May 2010 and April 2011 revealed a 2 km2 flat area with increased bed reflectivity at the base of Isunnguata Sermia at the western margin of the Greenland Ice Sheet. This flat reflector was located within a localized subglacial hydraulic potential (hydropotential) minimum, as part of a complex and elongated trough system. By analogy with comparable features in Antarctica, the initial interpretation of such a feature was a potential subglacial lake. In September 2013 a co-located seismic survey revealed a 1,750 m by 540 and 37 m thick stratified lens-shaped bedform at the base of a subglacial trough system. Amplitude Versus Angle (AVA) analysis yields a derived reflection coefficient R = 0.09 ± 0.14 indicative of consolidated sediments possibly overlain by dilatant till. The bed and flank on the northern side of the trough consist of unconsolidated, possibly water-bearing sediments with R = −0.10 ± 0.08, whereas on the southern side it consists of more consolidated material. We interpret the trough as a key component of the wider subglacial drainage network, for which the sediments on its northern side act as a localized water-storage reservoir. Given the observation of seasonally forming and rapidly draining supraglacial meltwater lakes in this area, we interpret the lens-shaped bedform as deposited by episodically ponding meltwater within the subglacial trough system. Our results highlight the importance of transient subglacial hydrological and sedimentological processes such as drainage events for the interaction of ice sheets and their substrates, to understand ice dynamics in a warming climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...