ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (3)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2022-03-29
    Description: Endemic Antarctic macroalgae are especially adapted to live in extreme Antarctic conditions. Their potential biogeographic distribution niche is primarily controlled by the photoperiodic regime and seawater temperatures, since these parameters regulate growth, reproduction, and survival during the entire life cycle. Here we analyzed the upper survival temperature (UST) of juvenile sporophytes and the temperature range for sporophyte formation from gametophytes of Desmarestia menziesii, one of the dominant endemic Antarctic brown algal species. This process is a missing link to better evaluate the full biogeographical niche of this species. Two laboratory experiments were conducted. First, growth and maximum quantum yield of juvenile sporophytes were analyzed under a temperature gradient (0, 5, 10, 12, 13, 14, 15, and 16 °C) in a 16:8 h light:dark (LD) regime (Antarctic spring condition) for 2 weeks. Second, the formation of sporophytes from gametophytes (as a proxy of gametophyte reproduction) was evaluated during a 7 weeks period under a temperature gradient (0, 4, 8, 12, and 16 °C), and two different photoperiods: 6:18 h LD regime simulating winter conditions and a light regime simulating the Antarctic shift from winter to spring by gradually increasing the light period from 7.5:16.5 h LD (late winter) to 18.5:5.5 h LD (late spring). Sporophytes of D. menziesii were able to grow and survive up to 14 °C for 2 weeks without visible signs of morphological damage. Thus, this species shows the highest UST of all endemic Antarctic Desmarestiales species. In turn, gametophyte reproduction solely took place at 0 °C but not at 4–8 °C. The number of emerging sporophytes was six times higher under the light regime simulating the transition from winter to spring than under constant short day winter conditions. There was a negative relationship between the number of sporophytes formed and the gametophyte density at the beginning of the experiment, which provides evidence that gametophyte density exerts some control upon reproduction in D. menziesii. Results strongly indicate that although sporophytes and gametophytes may survive in warmer temperatures, the northernmost distribution limit of D. menziesii in South Georgia Islands is set by the low temperature requirements for gametophyte reproduction. Hence, global warming could have an impact on the distribution of this and other Antarctic species, by influencing their growth and reproduction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-09-01
    Description: Macroalgae is a central part of marine shelf ecosystems in the Arctic, both as primary producers and as habitat builders and may contribute substantially to the carbon export into the deep sea. In Kongsfjorden we quantified the zonation of visually dominant macroalgal taxa and of detached macroalgae from underwater videos taken in summer 2009 at six transects between 2 to 138 m water depth. Four transects were located at the south shore along the length axis of the fjord (Kongsfjordneset, Brandal, Prince Heinrich Island, Tyskahytta). Two further transects investigated the steep bedrock of Hansneset with a west-east orientation 50 m apart from each other: Hansneset 1 (north) and Hansneset 2 (south). The georeferenced data (date, depth, coordinates) of all transects were linked to the timecode of the video and imported into a geographic coordinate system (GIS). Presence/absence and cover data of macroalgae along the transects was collated into the GIS. The resulting shape files provide useful information for further investigations of macroalgae in the fjord and the geographical information may enhance the repeatability of the investigation in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-09-01
    Description: In Kongsfjorden (Spitsbergen), we quantified the zonation of visually dominant macroalgal taxa and of detached macroalgae from underwater videos taken in summer 2009 at six transects between 2 and 138 m water depth. For the first time, we provide information on the occurrence of deep water red algae below the kelp forest and of detached macroalgae at water depth 〉 30 m. The presence and depth distribution of visually dominant red algae were especially pronounced at the outer fjord, decreased with proximity to the glacial front and they were absent at the innermost locations. Deepest crustose coralline red algae and foliose red algae were observed at 72 and 68 m, respectively. Brown algae were distributed along the entire fjord axis at 2–32 m. Green algae were only present at the middle to inner fjord and at areas influenced by physical disturbance at water depths of 2–26 m. With proximity to the inner fjord the depth distribution of all macroalgae became shallower and only extended to 18 m depth at the innermost location. Major recipients of detached macroalgae were sites at the shallower inner fjord and at the middle fjord below the photic zone at depths to 138 m. They may either fuel deep water secondary production, decompose or support carbon sequestration. Univariate and community analyses of macroalgal classes including detached macroalgae across transects and over depths reveal a considerable difference in community structure between the outermost sites, the central part and the inner fjord areas, reflecting the strong environmental gradients along glacial fjords.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...