ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (5)
Collection
Language
Year
  • 1
    Publication Date: 2022-03-21
    Description: Wind farms can be regarded as complex systems that are, on the one hand, coupled to the nonlinear, stochastic characteristics of weather and, on the other hand, strongly influenced by supervisory control mechanisms. One crucial problem in this context today is the predictability of wind energy as an intermittent renewable resource with additional non-stationary nature. In this context, we analyze the power time series measured in an offshore wind farm for a total period of one year with a time resolution of 10 min. Applying detrended fluctuation analysis, we characterize the autocorrelation of power time series and find a Hurst exponent in the persistent regime with crossover behavior. To enrich the modeling perspective of complex large wind energy systems, we develop a stochastic reduced-form model of power time series. The observed transitions between two dominating power generation phases are reflected by a bistable deterministic component, while correlated stochastic fluctuations account for the identified persistence. The model succeeds to qualitatively reproduce several empirical characteristics such as the autocorrelation function and the bimodal probability density function.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-21
    Description: We propose lacunarity as a novel recurrence quantification measure and illustrate its efficacy to detect dynamical regime transitions which are exhibited by many complex real-world systems. We carry out a recurrence plot based analysis for different paradigmatic systems and nonlinear empirical data in order to demonstrate the ability of our method to detect dynamical transitions ranging across different temporal scales. It succeeds to distinguish states of varying dynamical complexity in the presence of noise and nonstationarity, even when the time series is of short length. In contrast to traditional recurrence quantifiers, no specification of minimal line lengths is required and rather geometric features beyond linear structures in the recurrence plot can be accounted for. This makes lacunarity more broadly applicable as a recurrence quantification measure. Lacunarity is usually interpreted as a measure of heterogeneity or translational invariance of an arbitrary spatial pattern. In application to recurrence plots, it quantifies the degree of heterogenity in the temporal recurrence patterns at all relevant time scales. We demonstrate the potential of the proposed method when applied to empirical data, namely time series of acoustic pressure fluctuations from a turbulent combustor. Recurrence lacunarity captures both the rich variability in dynamical complexity of acoustic pressure fluctuations and shifting time scales encoded in the recurrence plots. Furthermore, it contributes to a better distinction between stable operation and near blowout states of combustors.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-13
    Description: The role of seasonality is indisputable in climate and ecosystem dynamics. Seasonal temperature and precipitation variability are of vital importance for the availability of food, water, shelter, migration routes, and raw materials. Thus, understanding past climatic and environmental changes at seasonal scale is equally important for unearthing the history and for predicting the future of human societies under global warming scenarios. Alas, in palaeoenvironmental research, the term ‘seasonality change’ is often used liberally without scrutiny or explanation as to which seasonal parameter has changed and how. Here we provide fundamentals of climate seasonality and break it down into external (insolation changes) and internal (atmospheric CO2 concentration) forcing, and regional and local and modulating factors (continentality, altitude, large-scale atmospheric circulation patterns). Further, we present a brief overview of the archives with potentially annual/seasonal resolution (historical and instrumental records, marine invertebrate growth increments, stalagmites, tree rings, lake sediments, permafrost, cave ice, and ice cores) and discuss archive-specific challenges and opportunities, and how these limit or foster the use of specific archives in archaeological research. Next, we address the need for adequate data-quality checks, involving both archive-specific nature (e.g., limited sampling resolution or seasonal sampling bias) and analytical uncertainties. To this end, we present a broad spectrum of carefully selected statistical methods which can be applied to analyze annually- and seasonally-resolved time series. We close the manuscript by proposing a framework for transparent communication of seasonality-related research across different communities.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-13
    Description: The analysis of irregularly sampled time series remains a challenging task requiring methods that account for continuous and abrupt changes of sampling resolution without introducing additional biases. The edit distance is an effective metric to quantitatively compare time series segments of unequal length by computing the cost of transforming one segment into the other. We show that transformation costs generally exhibit a nontrivial relationship with local sampling rate. If the sampling resolution undergoes strong variations, this effect impedes unbiased comparison between different time episodes. We study the impact of this effect on recurrence quantification analysis, a framework that is well suited for identifying regime shifts in nonlinear time series. A constrained randomization approach is put forward to correct for the biased recurrence quantification measures. This strategy involves the generation of a type of time series and time axis surrogates which we call sampling-rate-constrained (SRC) surrogates. We demonstrate the effectiveness of the proposed approach with a synthetic example and an irregularly sampled speleothem proxy record from Niue island in the central tropical Pacific. Application of the proposed correction scheme identifies a spurious transition that is solely imposed by an abrupt shift in sampling rate and uncovers periods of reduced seasonal rainfall predictability associated with enhanced ENSO and tropical cyclone activity.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-19
    Description: The role of seasonality is indisputable in climate and ecosystem dynamics. Seasonal temperature and precipitation variability are of vital importance for the availability of food, water, shelter, migration routes, and raw materials. Thus, understanding past climatic and environmental changes at seasonal scale is equally important for unearthing the history and for predicting the future of human societies under global warming scenarios. Alas, in palaeoenvironmental research, the term ‘seasonality change’ is often used liberally without scrutiny or explanation as to which seasonal parameter has changed and how. Here we provide fundamentals of climate seasonality and break it down into external (insolation changes) and internal (atmospheric CO2 concentration) forcing, and regional and local and modulating factors (continentality, altitude, large-scale atmospheric circulation patterns). Further, we present a brief overview of the archives with potentially annual/seasonal resolution (historical and instrumental records, marine invertebrate growth increments, stalagmites, tree rings, lake sediments, permafrost, cave ice, and ice cores) and discuss archive-specific challenges and opportunities, and how these limit or foster the use of specific archives in archaeological research. Next, we address the need for adequate data-quality checks, involving both archive-specific nature (e.g., limited sampling resolution or seasonal sampling bias) and analytical uncertainties. To this end, we present a broad spectrum of carefully selected statistical methods which can be applied to analyze annually- and seasonally-resolved time series. We close the manuscript by proposing a framework for transparent communication of seasonality-related research across different communities.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...