ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 22(3), (2021): e2020GC009472, https://doi.org/10.1029/2020GC009472.
    Description: Carbonatite volcanism remains poorly understood compared to silicic volcanism due to the scarcity of carbonatite volcanoes worldwide and because volcanic H2O and CO2—major components in carbonatite volcanic systems—are not well preserved in the rock record. To further our understanding of carbonatite genesis, we utilize the non-traditional thallium (Tl) isotope system in Khanneshin carbonatites in Afghanistan. These carbonatites contain 250–30,000 ng/g Tl and have ε205Tl values (−4.6 to +4.6) that span much of the terrestrial igneous range. We observe that δ18OVSMOW (+8.6‰ to +23.5‰) correlates positively with δ13CVPDB (−4.6‰ to +3.5‰) and ε205Tl up to δ18O = 15‰. Rayleigh fractionation of calcite from an immiscible CO2-H2O fluid with a mantle-like starting composition can explain the δ18O and δ13C—but not ε205Tl—trends. Biotite fractionates Tl isotopes in other magmatic settings, so we hypothesize that a Tl-rich hydrous brine caused potassic metasomatism (i.e., biotite fenitization) of wall rock that increased the ε205Tl of the residual magma-fluid reservoir. Our results imply that, in carbonatitic volcanic systems, simultaneous igneous differentiation and potassic metasomatism increase ε205Tl, δ18O, δ13C, and light rare earth element concentrations in residual fluids. Our fractionation models suggest that the Tl isotopic compositions of the primary magmas were among the isotopically lightest (less than or equal to ε205Tl = −4.6) material derived from the mantle for which Tl isotopic constraints exist. If so, the ultimate source of Tl in Khanneshin lavas—and perhaps carbonatites elsewhere—may be recycled ocean crust.
    Description: This project was supported by funding from Woods Hole Oceanographic Institution Independent Research & Development funds and the National Science Foundation (Award #1911699).
    Description: 2021-07-27
    Keywords: Carbonatite volcanism ; Metasomatism ; Recycled ocean crust ; Stable isotopes ; Thallium isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 22(5), (2021): e2020GC009608, https://doi.org/10.1029/2020GC009608.
    Description: Thallium (Tl) isotope ratios are an emerging tool that can be used to trace crustal recycling processes in arc lavas and ocean island basalts (OIBs). Thallium is a highly volatile metal that is enriched in volcanic fumaroles, but it is unknown whether degassing of Tl from subaerial lavas has a significant effect on their residual Tl isotope compositions. Here, we present Tl isotope and concentration data from degassing experiments that are best explained by Rayleigh kinetic isotope fractionation during Tl loss. Our data closely follow predicted isotope fractionation models in which TlCl is the primary degassed species and where Tl loss is controlled by diffusion and natural convection, consistent with the slow gas advection velocity utilized during our experiments. We calculate that degassing into air should be associated with a net Tl isotope fractionation factor of αnet = 0.99969 for diffusion and natural gas convection (low gas velocities) and αnet = 0.99955 for diffusion and forced gas convection (high gas velocities). We also show that lavas from three volcanoes in the Kamchatka arc exhibit Tl isotope and concentration patterns that plot in between the two different gas convection regimes, implying that degassing played an important role in controlling the observed Tl isotope compositions in these three volcanoes. Literature inspection of Tl isotope data for subaerial lavas reveals that the majority of these appear only minorly affected by degassing, although a few samples from both OIBs and arc volcanoes can be identified that likely experienced some Tl degassing.
    Description: National Science Foundation (NSF). Grant Numbers: EAR 1829546
    Keywords: Degassing ; Experiments ; Kinetic isotope fractionation ; Magma ; Thallium isotopes ; Volcanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-11-18
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Shu, Y., Nielsen, S. G., Le Roux, V., Wörner, G., Blusztajn, J., & Auro, M. Sources of dehydration fluids underneath the Kamchatka arc. Nature Communications, 13(1), (2022): 4467, https://doi.org/10.1038/s41467-022-32211-5.
    Description: Fluids mediate the transport of subducted slab material and play a crucial role in the generation of arc magmas. However, the source of subduction-derived fluids remains debated. The Kamchatka arc is an ideal subduction zone to identify the source of fluids because the arc magmas are comparably mafic, their source appears to be essentially free of subducted sediment-derived components, and subducted Hawaii-Emperor Seamount Chain (HESC) is thought to contribute a substantial fluid flux to the Kamchatka magmas. Here we show that Tl isotope ratios are unique tracers of HESC contribution to Kamchatka arc magma sources. In conjunction with trace element ratios and literature data, we trace the progressive dehydration and melting of subducted HESC across the Kamchatka arc. In succession, serpentine (〈100 km depth), lawsonite (100–250 km depth) and phengite (〉250 km depth) break down and produce fluids that contribute to arc magmatism at the Eastern Volcanic Front (EVF), Central Kamchatka Depression (CKD), and Sredinny Ridge (SR), respectively. However, given the Tl-poor nature of serpentine and lawsonite fluids, simultaneous melting of subducted HESC is required to explain the HESC-like Tl isotope signatures observed in EVF and CKD lavas. In the absence of eclogitic crust melting processes in this region of the Kamchatka arc, we propose that progressive dehydration and melting of a HESC-dominated mélange offers the most compelling interpretation of the combined isotope and trace element data.
    Description: This study was financially supported by grants from the National Natural Science Foundation of China (NSFC) (Grant No. 41903008) and Chinese Postdoctoral Science Foundation (Grant No. 2019M660153) to Y.S., NSF (Grant No. EAR-1829546) to S.G.N. and NSF (Grant No. EAR-1855302) to V.L.R.
    Keywords: Geochemistry ; Marine chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Martha’s Vineyard Sound Iodine Isotope Tracer Experiments
    Description: This dataset includes iodine speciation and isotope measurements from iodine tracer experiments. Water samples were collected from a depth of 5 meters at the Woods Hole Oceanographic Institution's Environmental Systems Laboratory on Martha's Vineyard Sound, Massachusetts, USA. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/865249
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1829406
    Keywords: Iodine speciation ; Iodine tracer
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: ETNP Iodate Reduction Experiments
    Description: This dataset includes results from iodine tracer experiments conducted on the R/V Falkor (cruise number FK180624) in June and July 2018. Samples were collected at the Eastern Tropical North Pacific oxygen deficient zone (ETNP ODZ) from five targeted depths (95, 105, 145, 168, and 475 meters) at 14N, 110W and one depth (151 meters) at 14N, 115W. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/865703
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1829406
    Keywords: Iodine speciation ; Iodine tracer
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Thallium isotopes
    Description: This thallium isotope dataset from a Cretaceous Oceanic Anoxic Event constrains the magnitude and timing of oceanic deoxygenation. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/819793
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1434785, NSF Division of Ocean Sciences (NSF OCE) OCE-1624895
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Vanadium isotopes
    Description: This dataset includes the analytical data for the analysis of a new instrumental method for vanadium isotopic analysis. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/819775
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1434785, NSF Division of Ocean Sciences (NSF OCE) OCE-1624895
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nielsen, S. G., Bekaert, D., V., Magna, T., Mezger, K., & Auro, M. The vanadium isotope composition of Mars: Implications for planetary differentiation in the early solar system. Geochemical Perspectives Letters, 15, (2020): 35-39, doi:10.7185/geochemlet.2032.
    Description: The V isotope composition of martian meteorites reveals that Bulk Silicate Mars (BSM) is characterised by δ51V = −1.026 ± 0.029 ‰ (2 s.e.) and is thus ∼0.06 ‰ heavier than chondrites and ∼0.17 ‰ lighter than Bulk Silicate Earth (BSE). Based on the invariant V isotope compositions of all chondrite groups, the heavier V isotope compositions of BSE and BSM relative to chondrites are unlikely to originate from mass independent isotope effects or evaporation/condensation processes in the early Solar System. These differences are best accounted for by mass dependent fractionation during core formation. Assuming that bulk Earth and Mars both have a chondritic V isotopic compostion, mass balance considerations reveal V isotope fractionation factors Δ51Vcore-mantle as substantial as −0.6 ‰ for both planets. This suggests that V isotope systematics in terrestrial and extraterrestrial rocks potentially constitutes a powerful new tracer of planetary differentiation processes accross the Solar System.
    Description: This work was funded by NASA Emerging Worlds grant NNX16AD36G to SGN. Samples were acquired with funds from the Helmholtz Association through the research alliance HA 203 “Planetary Evolution and Life” to KM. TM contributed through the Strategic Research Plan of the Czech Geological Survey (DKRVO/ČGS 2018-2022). KM acknowledges support through NCCR PlanetS supported by the Swiss National Science Foundation. We thank Jurek Blusztajn for support in the WHOI Plasma Facility.
    Keywords: Planetary differentiation ; Vanadium isotopes ; Mars ; Stable isotope fractionation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ostrander, C. M., Kendall, B., Gordon, G. W., Nielsen, S. G., Zheng, W., & Anbar, A. D. Shale heavy metal isotope records of low environmental O2 between two Archean Oxidation Events. Frontiers in Earth Science, 10, (2022): 833609, https://doi.org/10.3389/feart.2022.833609.
    Description: Evidence of molecular oxygen (O2) accumulation at Earth’s surface during the Archean (4.0–2.5 billion years ago, or Ga) seems to increase in its abundance and compelling nature toward the end of the eon, during the runup to the Great Oxidation Event. Yet, many details of this late-Archean O2 story remain under-constrained, such as the extent, tempo, and location of O2 accumulation. Here, we present a detailed Fe, Tl, and U isotope study of shales from a continuous sedimentary sequence deposited between ∼2.6 and ∼2.5 Ga and recovered from the Pilbara Craton of Western Australia (the Wittenoom and Mt. Sylvia formations preserved in drill core ABDP9). We find a progressive decrease in bulk-shale Fe isotope compositions moving up core (as low as δ56Fe = –0.78 ± 0.08‰; 2SD) accompanied by invariant authigenic Tl isotope compositions (average ε205TlA = –2.0 ± 0.6; 2SD) and bulk-shale U isotope compositions (average δ238U = –0.30 ± 0.05‰; 2SD) that are both not appreciably different from crustal rocks or bulk silicate Earth. While there are multiple possible interpretations of the decreasing δ56Fe values, many, to include the most compelling, invoke strictly anaerobic processes. The invariant and near-crustal ε205TlA and δ238U values point even more strongly to this interpretation, requiring reducing to only mildly oxidizing conditions over ten-million-year timescales in the late-Archean. For the atmosphere, our results permit either homogenous and low O2 partial pressures (between 10−6.3 and 10−6 present atmospheric level) or heterogeneous and spatially restricted O2 accumulation nearest the sites of O2 production. For the ocean, our results permit minimal penetration of O2 in marine sediments over large areas of the seafloor, at most sufficient for the burial of Fe oxide minerals but insufficient for the burial of Mn oxide minerals. The persistently low background O2 levels implied by our dataset between ∼2.6 and ∼2.5 Ga contrast with the timeframes immediately before and after, where strong evidence is presented for transient Archean Oxidation Events. Viewed in this broader context, our data support the emerging narrative that Earth’s initial oxygenation was a dynamic process that unfolded in fits-and-starts over many hundreds-of-millions of years.
    Description: This work was supported financially by the NSF Frontiers in Earth System Dynamics program award NSF EAR-1338810 (AA), a Woods Hole Oceanographic Institution Postdoctoral Scholarship (CO), a NSERC Discovery Grant (RGPIN-435930) and the Canada Research Chair program (BK), and a NASA Exobiology award 80NSSC20K0615 (SN).
    Keywords: Archean ; Thallium ; Iron ; Uranium ; Isotopes ; Oxygen
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nielsen, S. G., Bekaert, D. V., & Auro, M. Isotopic evidence for the formation of the moon in a canonical giant impact. Nature Communications, 12(1), (2021): 1817, https://doi.org/10.1038/s41467-021-22155-7.
    Description: Isotopic measurements of lunar and terrestrial rocks have revealed that, unlike any other body in the solar system, the Moon is indistinguishable from the Earth for nearly every isotopic system. This observation, however, contradicts predictions by the standard model for the origin of the Moon, the canonical giant impact. Here we show that the vanadium isotopic composition of the Moon is offset from that of the bulk silicate Earth by 0.18 ± 0.04 parts per thousand towards the chondritic value. This offset most likely results from isotope fractionation on proto-Earth during the main stage of terrestrial core formation (pre-giant impact), followed by a canonical giant impact where ~80% of the Moon originates from the impactor of chondritic composition. Our data refute the possibility of post-giant impact equilibration between the Earth and Moon, and implies that the impactor and proto-Earth mainly accreted from a common isotopic reservoir in the inner solar system.
    Description: This study was funded by NASA Emerging Worlds grant NNX16AD36G to S.G.N. We thank NASA-JSC, Tony Irving, and Thorsten Kleine for access to meteorite and Apollo mission samples. US Antarctic meteorite samples are recovered by the Antarctic Search for Meteorites (ANSMET) program, which has been funded by NSF and NASA, and characterized and curated by the Astromaterials Curation Office at NASA Johnson Space Center and the Department of Mineral Sciences of the Smithsonian Institution. J. Blusztajn is thanked for help with mass spectrometry support at WHOI.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...