ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-11-14
    Description: The Indo-Pacific Warm Pool (IPWP) exerts a dominant role in global climate by releasing huge amounts of water vapour and latent heat to the atmosphere and modulating upper ocean heat content (OHC), which has been implicated in modern climate change1. The long-term variations of IPWP OHC and their effect on monsoonal hydroclimate are, however, not fully explored. Here, by combining geochemical proxies and transient climate simulations, we show that changes of IPWP upper (0–200 m) OHC over the past 360,000 years exhibit dominant precession and weaker obliquity cycles and follow changes in meridional insolation gradients, and that only 30%–40% of the deglacial increases are related to changes in ice volume. On the precessional band, higher upper OHC correlates with oxygen isotope enrichments in IPWP surface water and concomitant depletion in East Asian precipitation as recorded in Chinese speleothems. Using an isotope-enabled air–sea coupled model, we suggest that on precessional timescales, variations in IPWP upper OHC, more than surface temperature, act to amplify the ocean–continent hydrological cycle via the convergence of moisture and latent heat. From an energetic viewpoint, the coupling of upper OHC and monsoon variations, both coordinated by insolation changes on orbital timescales, is critical for regulating the global hydroclimate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-11-02
    Description: 〈jats:p〉Abstract. We present a global atlas of downcore foraminiferal oxygen and carbon isotope ratios available at https://doi.org/10.1594/PANGAEA.936747 (Mulitza et al., 2021a). The database contains 2106 published and previously unpublished stable isotope downcore records with 361 949 stable isotope values of various planktic and benthic species of Foraminifera from 1265 sediment cores. Age constraints are provided by 6153 uncalibrated radiocarbon ages from 598 (47 %) of the cores. Each stable isotope and radiocarbon series is provided in a separate netCDF file containing fundamental metadata as attributes. The data set can be managed and explored with the free software tool PaleoDataView. The atlas will provide important data for paleoceanographic analyses and compilations, site surveys, or for teaching marine stratigraphy. The database can be updated with new records as they are generated, providing a live ongoing resource into the future. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reyes-Macaya, D., Hoogakker, B., Martinez-Mendez, G., Llanillo, P. J., Grasse, P., Mohtadi, M., Mix, A., Leng, M. J., Struck, U., McCorkle, D. C., Troncoso, M., Gayo, E. M., Lange, C. B., Farias, L., Carhuapoma, W., Graco, M., Cornejo-D’Ottone, M., De Pol Holz, R., Fernandez, C., Narvaez, D., Vargas, C. A., García-Araya, F., Hebbeln, D. Isotopic characterization of water masses in the Southeast Pacific Region: paleoceanographic implications. Journal of Geophysical Research: Oceans, 127(1), (2022): e2021JC017525, https://doi.org/10.1029/2021JC017525.
    Description: In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen, and nutrient concentrations to characterize the coastal (71°–78°W) and an oceanic (82°–98°W) water masses (SAAW—Subantarctic Surface Water; STW—Subtropical Water; ESSW—Equatorial Subsurface water; AAIW—Antarctic Intermediate Water; PDW—Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW, and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW, and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1,000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
    Description: R/V Sonne cruises (SO102, SO211 ad SO245) were financed by the German Federal Ministry of Education and Research projects #03G0102A, #03G0211A and #03G0245A. SO261 cruise was funded by the HADES-ERC Advanced Grant (“Benthic diagenesis and microbiology of hadal trenches” Grant agreement No. 669947) awarded to R. N. Glud (SDU, Denmark). SO245 cruise recived contributions from the Max Planck Society (Germany), the German State of Lower Saxony, the National Environmental Research Council of Great Britain and the Science Foundation of Ireland. R/V Meteor cruise M93 was financed by the Sonderforschungsbereich 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean” (www.sfb754.de), which is supported by the Deutsche Forschungsgemeinschaft. “Expedición TAITAO” was financed by the grant “Concurso Nacional de Asignación de Tiempo de Buque ASG-61 Cabo de Hornos” AUB180003, FONDECyT grants 11161091 (DN), 1180954 (CF), and the COPAS Sur-Austral Center (CONICYT PIA APOYO CCTE AFB170006). Sampling at Time-Series station 18 off Concepción during 2015 was funded by several FONDECYT/ANID grants from researchers at the Department of Oceanography and Research Line 5 of COPAS Sur-Austral (UdeC). ANID—Chile National Competition for ship time (AUB 150006/12806) financed the expedition LowpHOX organized by the Millennium Institute of Oceanography (IMO). The expedition Crio1218 was financed by the PPR 137 titled “Proyecto de Estudio Integrado del Afloramiento Costero Frente a Perú" and sponsored by IMARPE-Perú. Additional funding was provided by the ANID—Millennium Science Initiative Program—NCN19_153 (Millennium Nucleus UPWELL), ANID/FONDAP (CR)2 15110009 (LF and EMG), FONDECYT Grant 1210171 (CAV), ANID/FONDAP IDEAL 15150003 (CBL), and the Millennium Institute of Oceanography (IMO, ICN12_019). Dharma A. Reyes-Macaya was supported by Becas Chile (17342817-0), DAAD (57144001) and FARGO project (FAte of ocean oxygenation in a waRminG wOrld, UKRI).
    Keywords: Oxygen and deuterium stable isotopes in seawater ; Carbon stable isotopes in dissolved inorganic carbon ; Southeast Pacific ; Water mass distribution ; Paleoceanography proxies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...