ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (10)
  • 2005-2009  (5)
Collection
Language
Years
Year
  • 1
    Publication Date: 2009-10-26
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-04-21
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-06-28
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-21
    Description: Every year, millions of people around the world are being displaced from their homes due to climate-related disasters. River flooding is responsible for a large part of this displacement. Previous studies have shown that river flood risk is expected to change as a result of global warming and its effects on the hydrological cycle. At the same time, future scenarios of socio-economic development imply substantial population increases in many of the areas that presently experience disaster-induced displacement. Here we show that both global warming and population change are projected to lead to substantial increases in flood-induced displacement risk over the coming decades. We use a global climate-hydrology-inundation modelling chain, including multiple alternative climate and hydrological models, to quantify the effect of global warming on displacement risk assuming either current or projected future population distributions. Keeping population fixed at present levels, we find roughly a 50% increase in global displacement risk for every degree of global warming. Adding projected population changes further exacerbates these increases globally and in most world regions, with the relative global flood displacement risk is increasing by roughly 350% at the end of the 21st century, compared to an increase of 150% without the contribution of population change. While the resolution of the global models is limited, the effect of global warming is robust across greenhouse gas concentration scenarios, climate models and hydrological models. These findings indicate a need for rapid action on both climate mitigation and adaptation agendas in order to reduce future risks to vulnerable populations.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-21
    Description: Background: Anticipating changes in international migration patterns is useful for demographic studies and for designing policies that support the well-being of those involved. Existing forecasting methods do not account for a number of stylized facts that emerge from large-scale migration observations and theories: existing migrant communities – diasporas – act to lower migration costs and thereby provide a mechanism of self-amplification; return migration and transit migration are important components of global migration flows; and poverty constrains emigration. Objective: Here we present hindcasts and future projections of international migration that explicitly account for these nonlinear features. Methods: We develop a dynamic model that simulates migration flows by origin, destination, and place of birth. We calibrate the model using recently constructed global datasets of bilateral migration. Results: We show that the model reproduces past patterns and trends well based only on initial migrant stocks and changes in national incomes. We then project migration flows under future scenarios of global socioeconomic development. Conclusions: Different assumptions about income levels and between-country inequality lead to markedly different migration trajectories, with migration flows either converging towards net zero if incomes in presently poor countries catch up with the rest of the world; or remaining high or even rising throughout the 21st century if economic development is slower and more unequal. Importantly, diasporas induce significant inertia and sizable return migration flows. Contribution: Our simulation model provides a versatile tool for assessing the impacts of different socioeconomic futures on international migration, accounting for important nonlinearities in migration drivers and flows.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Proceedings of the National Academy of Sciences of the United States of America (PNAS)
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-21
    Description: Global flood models (GFMs) are increasingly being used to estimate global-scale societal and economic risks of river flooding. Recent validation studies have highlighted substantial differences in performance between GFMs and between validation sites. However, it has not been systematically quantified to what extent the choice of the underlying climate forcing and global hydrological model (GHM) influence flood model performance. Here, we investigate this sensitivity by comparing simulated flood extent to satellite imagery of past flood events, for an ensemble of three climate reanalyses and 11 GHMs. We study eight historical flood events spread over four continents and various climate zones. For most regions, the simulated inundation extent is relatively insensitive to the choice of GHM. For some events, however, individual GHMs lead to much lower agreement with observations than the others, mostly resulting from an overestimation of inundated areas. Two of the climate forcings show very similar results, while with the third, differences between GHMs become more pronounced. We further show that when flood protection standards are accounted for, many models underestimate flood extent, pointing to deficiencies in their flood frequency distribution. Our study guides future applications of these models, and highlights regions and models where targeted improvements might yield the largest performance gains.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-21
    Description: The Indian summer monsoon is an integral part of the global climate system. As its seasonal rainfall plays a crucial role in India's agriculture and shapes many other aspects of life, it affects the livelihood of a fifth of the world's population. It is therefore highly relevant to assess its change under potential future climate change. Global climate models within the Coupled Model Intercomparison Project Phase 5 (CMIP-5) indicated a consistent increase in monsoon rainfall and its variability under global warming. Since the range of the results of CMIP-5 was still large and the confidence in the models was limited due to partly poor representation of observed rainfall, the updates within the latest generation of climate models in CMIP-6 are of interest. Here, we analyse 32 models of the latest CMIP-6 exercise with regard to their annual mean monsoon rainfall and its variability. All of these models show a substantial increase in June-to-September (JJAS) mean rainfall under unabated climate change (SSP5-8.5) and most do also for the other three Shared Socioeconomic Pathways analyzed (SSP1-2.6, SSP2-4.5, SSP3-7.0). Moreover, the simulation ensemble indicates a linear dependence of rainfall on global mean temperature with high agreement between the models and independent of the SSP; the multi-model mean for JJAS projects an increase of 0.33 mm/day and 5.3 % per degree of global warming. This is significantly higher than in the CMIP-5 projections. Most models project that the increase will contribute to the precipitation especially in the Himalaya region and to the northeast of the Bay of Bengal, as well as the west coast of India. Interannual variability is found to be increasing in the higher-warming scenarios by almost all models. The CMIP-6 simulations largely confirm the findings from CMIP-5 models, but show an increased robustness across models with reduced uncertainties and updated magnitudes towards a stronger increase in monsoon rainfall.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-21
    Description: Lake ecosystems are jeopardized by the impacts of climate change on ice seasonality and water temperatures. Yet historical simulations have not been used to formally attribute changes in lake ice and temperature to anthropogenic drivers. In addition, future projections of these properties are limited to individual lakes or global simulations from single lake models. Here we uncover the human imprint on lakes worldwide using hindcasts and projections from five lake models. Reanalysed trends in lake temperature and ice cover in recent decades are extremely unlikely to be explained by pre-industrial climate variability alone. Ice-cover trends in reanalysis are consistent with lake model simulations under historical conditions, providing attribution of lake changes to anthropogenic climate change. Moreover, lake temperature, ice thickness and duration scale robustly with global mean air temperature across future climate scenarios (+0.9 °C °Cair–1, –0.033 m °Cair–1 and –9.7 d °Cair–1, respectively). These impacts would profoundly alter the functioning of lake ecosystems and the services they provide.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...