ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (2)
Collection
Years
Year
  • 1
    Publication Date: 2021-02-02
    Description: Flexible ionogels with good mechanical properties were obtained in situ by thiol-ene photopolymerization of trimethylolpropane tris(3-mercaptopropionate) (TMPTP) and 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATT) (with C=C: SH ratio 1:1) in four imidazolium ionic liquids (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide—EMImNTf2, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate-EMImOTf, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide-BMImNTf2, and 1-butyl-3-methylimidazolium trifluoromethanesulfonate—BMImOTf) used in the range 50 to 70 wt.%. The mechanical and electrochemical properties of obtained ionogels were examined. Ionogels with ionic liquids (ILs) with NTf2− anion are more puncture resistant than with OTf− anion. Moreover, ionogels with the NTF2− anion have better electrochemical properties than those with the OTf− anion. Although it should be noted that ionogels with the EMIm+ cation have a higher conductivity than the BMIm+. This is connected with intermolecular interactions between polymer matrix and IL related to the polarity of IL described by the Kamlet-Taft parameters. These parameters influence the morphology of the polymer matrix (as shown by the SEM micrograph), which is formed by interconnected polymer spheres.
    Electronic ISSN: 1420-3049
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-02
    Description: In this paper, the potential of novel polymer sorbents with the imprinted IL-functional group for the removal of Cu(II), Cd(II), and Zn(II) from aqueous solutions was investigated by batch mode. The sorbents were fabricated by direct reaction of the prepared polymer matrix (poly(vinylbenzyl chloride-divinylbenzene), VBC, and poly(vinylbenzyl bromide-divinylbenzene), VBBr) with 1-(3- or 4-pyridyl)undecan-1-one and oxime of 1-(3- or 4-pyridyl)undecan-1-one. The Fourier Transform Infrared Spectroscopy (FT-IR), Raman Spectroscopy (Raman), Thermogravimetric Analysis (TG), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) techniques were used to show functionality and stability of the sorbents. The materials were also characterized by contact-angle goniometry, X-rayphotoelectron spectroscopy (XPS), and Zeta potential analysis. The removal of Cd(II), Cu(II), and Zn(II) was monitored and optimized under the influence of several operational controlling conditions and factors such as pH, shaking time, temperature, initial metal ions concentration, and counter-ions at the functional group. The results obtained confirmed the very high potential of the sorbents; however, the properties depend on the structure of the functional group. The tested sorbents showed fast kinetics, significant capacity at 25 °C (84 mg/g for the Zn(II) sorption with VBC-Ox4.10, 63 mg/g for the Cd(II) sorption with VBBr-Ox3.10, and 69 mg/g for the Cu(II) sorption with VBC-K3.10), and temperature dependence (even 100% increase in capacity values at 45 °C). The selected sorbent can be regenerated without a significant decrease in the metal removal efficiency.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...