ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (4)
  • 2022  (4)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2024-02-07
    Description: Ecosystem models need to capture biodiversity, because it is a fundamental determinant of food web dynamics and consequently of the cycling of energy and matter in ecosystems. In oceanic food webs, the plankton compartment encompasses by far most of the biomass and diversity. Therefore, capturing plankton diversity is paramount for marine ecosystem modelling. In recent years, many models have been developed, each representing different aspects of plankton diversity, but a systematic comparison remains lacking. Here we present established modelling approaches to study plankton ecology and diversity, discussing the limitations and strengths of each approach. We emphasize their different spatial and temporal resolutions and consider the potential of these approaches as tools to address societal challenges. Finally, we make suggestions as to how better integration of field and experimental data with modelling could advance understanding of both plankton biodiversity specifically and more broadly the response of marine ecosystems to environmental change, including climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Legal requirement in Europe asks for Ecosystem-Based Fisheries Management (EBFM) in European seas, including consideration of trophic interactions and minimization of negative impacts of fishing on food webs and ecosystem functioning. This study presents the first mass-balanced ecosystem model focused on the western Baltic Sea (WBS). Results show that heavy fishing pressure exerted on the WBS has forced top predators such as harbour porpoise and cod to cover their dietary needs by shifting from forage fish to other prey or find food outside of the model area. The model was then developed to explore the dynamics of four future fishery scenarios: (1) business as usual (BAU), (2) maximum sustainable fishing (F = FMSY), (3) half of FMSY, and (4) EBFM with F = 0.5 FMSY for forage fish and F = 0.8 FMSY for other fish. Simulations show that BAU would perpetuate low catches from depleted stocks with a high risk of extinction for harbour porpoise. In contrast, the EBFM scenario would allow the recovery of harbour porpoise, forage fish and cod with increases in catch of herring and cod. EBFM promotes ecosystem resilience to eutrophication and ocean warming, and through the rebuilding of commercial stocks increases by more than three times carbon sequestration compared to BAU. The model provides an interrelated assessment of trophic guilds in the WBS, as required by European law to assess whether European seas are in good environmental status.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Climate change and deoxygenation are affecting fish stocks on a global scale, but disentangling the impacts of these stressors from the effects of overfishing is a challenge. This study was conducted to distinguish between climate change and mismanagement as possible causes for the drastic decline in spawning stock size and reproductive success in cod (Gadus morhua) and herring (Clupea harengus) in the Western Baltic Sea, when compared with the good or satisfactory status and reproductive success of the other commercial species in the area. Available data on water temperature, wind speed, and plankton bloom during the spawning season did not reveal conclusive correlations between years with good and bad reproductive success of cod or herring. Notably, the other commercial species in the area have very similar life history traits suggesting similar resilience against stress caused by climate change or fishing. The study concludes that severe, sustained overfishing plus inappropriate size selectivity of the main fishing gears have caused the decline in spawning stock biomass of cod and herring to levels that are known to have a high probability of impaired reproductive success. It is pointed out that allowed catches were regulated by management and adhered to by the fishers, meaning that unregulated fishing did not occur. Thus, mismanagement (quotas that were too high and gears that selected too small sizes) and not climate change appears to be the primary cause of the bad status of cod and herring in the Western Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Highlights: • Flow network indices signal directional changes during ecosystem development. • They showed linear trends in the evolution of a mountain lake. • The lake evolved to increase stability at the expense of efficiency in energy transfer. • Trends of the indices challenge current hypotheses about the directionality of ecosystem development. • Flow network indices from long term field data can help assessing ecosystem health. Empirical evidence of the theoretically expected trends of ecosystem development is scarce so far. In this research, we used long-term empirical data about the plankton community of a small mountain lake (Lake Santo, northern Apennines, Italy) to reconstruct its developmental trajectory during a period comprised between early 1970 s and 2010 s. We exploited these data to build yearly ecological networks and from their configuration of energy flows we computed network information indices. The trends of these indices enlighten about the developmental trajectory of this ecosystem during the period covered by the data set. In particular, they indicate that Lake Santo evolved in the direction of increasing stability at the expense of efficiency in energy transfer. We compared these results with current hypotheses about the directionality of ecosystem development, which are rooted in ecosystem theory, and discussed the possibility that, counter to some theoretical models of ecosystem development, Lake Santo followed an unimpeded direction of development rather than a trajectory typical of an ecosystem under stress. Finally, the long-term trends of flow network indices provided insights about the health status of the ecosystem.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...