ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (1)
  • 2019  (1)
Collection
Publisher
Years
  • 2015-2019  (1)
Year
  • 1
    Publication Date: 2022-01-31
    Description: The Hikurangi Subduction Zone (HSZ), New Zealand, accommodates westward subduction of the Pacific Plate. Where imaged seismically, the shallow HSZ décollement (〈10–15 km depth) occurs within or along the upper contact of Late Cretaceous-Paleogene (70–32 million-year-old) sediments. The frictional properties of Paleogene sediments recovered from Ocean Drilling Program Leg 181, Site 1124 were measured at 60 MPa effective normal stress and varying sliding velocities (V = 0.3–30 µm/s) and temperatures (T = 25–225 °C). Velocity-stepping experiments were conducted at temperatures of 25 °C, 75 °C, 150 °C, and 225 °C to determine the friction rate parameter (a–b). Paleocene and Oligocene clay-bearing nannofossil chalks (μ = 0.45–0.61) and a middle Eocene clayey nannofossil chalk (μ = 0.35–0.51) are frictionally stronger than smectite-bearing Eocene clays (μ = 0.16–0.31). With increasing temperature, chalks show rate-strengthening to rate-weakening frictional stability trends; clays show rate-weakening and rate-neutral to rate-strengthening frictional stability trends. The results obtained from Site 1124 sediments indicate that: (1) fault-zone weakness may not require pore-fluid overpressures; (2) clays and chalks can host frictional instabilities; and (3) heterogeneous frictional properties can promote variable slip behaviour.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...