ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2013-01-05
    Beschreibung: [1]  We present a comparison of temperature trends using different satellite and radiosonde observations and climate (GCM) and chemistry-climate model (CCM) output, focusing on the role of photochemical ozone depletion in the Antarctic lower stratosphere during the second half of the twentieth century. Ozone-induced stratospheric cooling peaks during November at an altitude of approximately 100 hPa in radiosonde observations, with 1969-1998 trends in the range -3.8 to -4.7 K / dec. This stratospheric cooling trend is more than 50% greater than the previously estimated value of -2.4 K / dec [ Thompson and Solomon , 2002], which suggested that the CCMs were overestimating the stratospheric cooling, and that the less complex GCMs forced by prescribed ozone were matching observations better. Corresponding ensemble mean model trends are -3.8 K / dec for the CCMs, -3.5 K / dec for the CMIP5 GCMs, and -2.7 K / dec for the CMIP3 GCMs. Accounting for various sources of uncertainty – including sampling uncertainty, measurement error, model spread, and trend confidence intervals – observations, and CCM and GCM ensembles are consistent in this new analysis. This consistency does not apply to every individual that comprises the GCM and CCM ensembles, and some do not show significant ozone-induced cooling. Nonetheless, analysis of the joint ozone and temperature trends in the CCMs suggests that the modeled cooling/ozone-depletion relationship is within the range of observations. Overall, this study emphasizes the need to use a wide range of observations for model validation, as well as sufficient accounting of uncertainty in both models and measurements.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
  • 3
    Publikationsdatum: 2013-04-05
    Beschreibung: [1]  Interannual variability in tropical sea-surface temperatures (SSTs) associated with the El Niño-Southern Oscillation is linked to teleconnections with the Northern Annular Mode (NAM). Previous work highlighted that the sign and amplitude of the NAM response to tropical SSTs is controlled by the total wave activity entering the subpolar stratosphere, which depends on the linear interference of planetary wave anomalies with the climatological stationary wave field. This study uses multiple configurations ofatmospheric general circulation models to assess the robustness of these linkages to details of the tropical SST forcing and model configuration. Across 23 cases with idealized SST forcing the amplitudes of the tropical and extratropical wave responses are found to scale approximately linearly with forcing strength. But wave amplitude alone is not sufficient to predict the NAM response. Instead, the spatial structure of the wave response (and hence the linear interference) provides the best explanation of the NAM response in all cases. Linear interference explains most of the total wave activity response even in cases with stronger nonlinear contributions, due to consistent cancellation between quasi-stationary wave nonlinearity and nonlinearity arising from transient waves. Within this limited set of experiments, there is no evidence for a consistent sensitivity of the NAM response to horizontal resolution or to vertical resolution in the stratosphere. These findings reveal that linear interference provides a robust and reproducible mechanism linking midlatitude wave responses to zonal mean circulation (NAM) responses across a wide variety of forcing cases.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019
    Beschreibung: Abstract A major component of California's yearly precipitation comes from wintertime atmospheric river (AR) events which bring large amounts of moisture from the tropics up to the midlatitudes. Understanding these systems, specifically the effects of aerosol particles on precipitation associated with these storms, was a major focus of the 2015 Atmospheric Radiation Measurement (ARM) Cloud Aerosol Precipitation Experiment (ACAPEX), which was part of the wintertime CalWater 2015 campaign. The measurement campaign provided sampling platforms on four aircraft, including the ARM Aerial Facility G‐1, as well as the NOAA Ronald H. Brown research vessel and at a ground station in Bodega Bay, CA. Measurements of ice nucleating particles (INPs) were made with the Colorado State University (CSU) Continuous Flow Diffusion Chamber (CFDC) aboard the G‐1, and aerosol filters were collected on the G‐1, at the Bodega Bay site and on the Ronald H. Brown for post‐processing via immersion freezing in the CSU Ice Spectrometer. Aerosol composition was measured aboard the G‐1 with the Aerosol Time‐of‐Flight Mass Spectrometer (ATOFMS). Here we present INP concentrations and aerosol chemical compositions during the course of the aircraft campaign. During the AR event, we found that marine aerosol was the main aerosol type and that marine INPs were dominant at cloud activation temperatures, which is in stark contrast to the dominance of dust INPs during the AR events in the CalWater 2011 campaign.
    Print ISSN: 2169-897X
    Digitale ISSN: 2169-8996
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2016-08-10
    Beschreibung: Marine boundary layer ozone seasonal cycles have been quantified by fitting the sum of two sine-curves through monthly detrended observations taken at three stations: Mace Head, Ireland and Trinidad Head, California in the northern hemisphere and Cape Grim, Tasmania in the southern hemisphere. The parameters defining the sine-curve fits at these stations have been compared with those from a global Lagrangian chemistry-transport model (STOCHEM-CRI) and from fourteen ACCMIP chemistry-climate models. Most models substantially overestimated the long-term average ozone levels at Trinidad Head whilst they performed much better for Mace Head and Cape Grim. This led to an underestimation of the observed (North Atlantic inflow – North Pacific inflow) difference. The models generally under-predicted the magnitude of the fundamental term of the fitted seasonal cycle, most strongly at Cape Grim. The models more accurately reproduced the observed second harmonic terms compared to the fundamental terms at all stations. Significant correlations have been identified between the errors in the different models’ estimates of the seasonal cycle parameters; these correlations may yield further insights into the causes of the model – measurement discrepancies.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2012-09-29
    Beschreibung: We investigate the representation of the Sierra Barrier Jet (SBJ) in four numerical models at different resolutions, primarily documenting its representation within a high-resolution (6 km), 11-year WRF reanalysis downscaling (WRF-RD). A comprehensive validation of this dynamical downscaling is undertaken during 11 cool seasons (water years 2001–2011, October to March) using available wind profiler data at Chico, CA (CCO). We identify SBJ cases in the observed CCO wind profiler data, as well as in WRF-RD at the closest grid point. WRF-RD's representation of the SBJ at CCO is compared with that of other reanalysis products with coarser horizontal resolutions (i.e., the North American Regional Reanalysis (NARR), the California Reanalysis downscaling, and the NCEP/NCAR Reanalysis) to assess whether downscaling is necessary to correctly capture this topographically induced low-level jet. Detailed comparisons across California between WRF-RD and NARR suggest downscaling is necessary: Only WRF-RD at 6 km resolution is well-capturing this dynamical feature. A catalog of modeled SBJ events that have significant timing overlap with observations is created and used to further assess WRF-RD's representation of SBJ events. In addition, observation-model comparisons of other meteorologically important variables (e.g., precipitation melting level, wind profiles, temperature, and relative humidity) are performed in order to evaluate WRF-RD's ability to capture the dynamical evolution of the SBJ. The detailed, case-by-case comparisons reveal WRF-RD accurately represents 56 percent of the 256 observed SBJ cases occurring during these 11 cool seasons, albeit with a weak wind bias that increases with jet maximum wind strength.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2012-09-25
    Beschreibung: With 18% of the total U.S. landmass devoted to croplands, farmland and farming activities are potentially major sources of biogenic particles to the atmosphere. Farms harbor large populations of microbes both in the soil and on plant surfaces which, if injected into the atmosphere, may serve as nuclei for clouds. In this study, we investigated two farms as potential sources of biological ice nuclei (IN): an organic farm in Colorado and a cornfield in Nebraska. We used a continuous-flow diffusion chamber (CFDC) to obtain real-time measurements of IN at these farm sites. Total aerosol particles were also collected at the sites, and their temperature-dependent ice nucleating activity was determined using the drop freezing method. Quantitative polymerase chain reaction and DNA sequencing of 16S rDNA clone libraries were used to test aerosols and washings of local vegetation for abundance of the ina gene in ice nucleation active bacteria (from the well-known group within the γ-Proteobacteria) and to identify airborne primary biological aerosol particles. The vegetation in each of these farms contained 6 × 105 to 2 × 107 ina genes per gram vegetation. In contrast to the vegetation, airborne ina gene concentrations at the organic farm were typically below detectable limits, demonstrating a disconnect between local vegetative sources and the air above them. However, for measurements made during combine harvesting at the Nebraska corn field, ina gene concentrations were 19 L−1, with maximum IN concentrations of 50 L−1 determined from the CFDC at −20°C and above water saturation. At both farms, there was also an apparent biological contribution to the IN population which did not contain the ina gene.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2012-06-15
    Beschreibung: Snow albedo feedback (SAF) is important for global climate change, with strong regional impacts over northern continental areas. SAF calculated from the seasonal cycle is a good predictor of SAF in climate change among a suite of coupled climate models. A previous linear decomposition of the simulated total SAF (NET) found 80% was related to the albedo contrast of snow covered and snow-free land (SNC), and 20% was related to the temperature dependence of snow albedo (TEM). By contrast, recent work using snow cover and surface albedo derived from APP-x satellite observations found that TEM and SNC contributed almost equally to NET. In the present study, revised estimates of TEM and SNC for northern land areas are calculated for the period 1982–99 using a simplified and reproducible method for comparing SAF in models and observations. The observed NET is −1.11% K−1, of which 69% comes from SNC and 31% from TEM; the approximate additivity of SNC and TEM indicates that these two terms fully explain the total SAF. Regionally, the SNC term dominates equatorward of 65°N, while TEM dominates over the Arctic. The mean of 17 CMIP3 climate models shows NET is 7% larger than observed, caused primarily by a bias in TEM equatorward of 65°N. A newer model (NCAR CCSM4) with improved land surface and snow schemes reproduces observed values of NET and SNC closely. However, TEM in all models examined is 50–100% weaker than observed over the Arctic. There is a strong correlation between SAF in the seasonal cycle and SAF in climate change for all components, but the correlation is weakest for TEM. The TEM term also exhibits a much larger spread in the seasonal cycle than in climate change, which partially explains a discrepancy between previous published studies examining TEM.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2012-07-04
    Beschreibung: Vertical fluxes of wave activity from the troposphere to the stratosphere correlate negatively with the Northern Annular Mode (NAM) index in the stratosphere and subsequently in the troposphere. Recent studies have shown that stratospheric NAM variability is also negatively correlated with the amplitude of the wave pattern coherent with the large-scale climatological stationary wavefield; when the climatological stationary wavefield is amplified or attenuated, the stratospheric jet correspondingly weakens or strengthens. Here we quantify the importance of this linear interference effect in initiating stratosphere-troposphere interactions by performing a decomposition of the vertical wave activity flux using reanalysis data. The interannual variability in vertical wave activity flux in both the Northern and Southern Hemisphere extratropics is dominated by linear interference of quasi-stationary waves during the season of strongest stratosphere-troposphere coupling. Composite analysis of anomalous vertical wave activity flux events reveals the significant role of linear interference and shows that “linear” and “nonlinear” events are essentially independent. Linear interference is the dominant contribution to the vertical wave activity flux anomalies preceding displacement stratospheric sudden warmings (SSWs) while split SSWs are preceded by nonlinear wave activity flux anomalies. Wave activity variability controls the timing of stratospheric final warmings, and this variability is shown to be dominated by linear interference, particularly in the Southern Hemisphere. The persistence of the linear interference component of the vertical wave activity flux, corresponding to persistent constructive or destructive interference between the wave-1 component of climatological stationary wave and the wave anomaly, may help improve wintertime extratropical predictability.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2012-05-31
    Beschreibung: This study uses a global chemical transport model to estimate the distribution of isocyanic acid (HNCO). HNCO is toxic, and concentrations exceeding 1 ppbv have been suggested to have negative health effects. Based on fire studies, HNCO emissions were scaled to those of hydrogen cyanide (30%), resulting in yearly total emissions of 1.5 Tg for 2008, from both anthropogenic and biomass burning sources. Loss processes included heterogeneous uptake (pH dependent), dry deposition (like formic acid), and reaction with the OH radical (k = 1 × 10−15 molecule−1 cm3 s−1). Annual mean surface HNCO concentrations were highest over parts of China (maximum of 470 pptv), but episodic fire emissions gave much higher levels, exceeding 4 ppbv in tropical Africa and the Amazon, and exceeding 10 ppbv in Southeast Asia and Siberia. This suggests that large biomass burning events could result in deleterious health effects for populations in these regions. For the tropospheric budget, using the model-calculated pH the HNCO lifetime was 37 days, with the split between dry deposition and heterogeneous loss being 95%:5%. Fixing the heterogeneous loss rate at pH = 7 meant that this process dominated, accounting for ∼70% of the total loss, giving a lifetime of 6 days, and resulting in upper tropospheric concentrations that were essentially zero. However, changing the pH does not notably impact the high concentrations found in biomass burning regions. More observational data is needed to evaluate the model, as well as a better representation of the likely underestimated biofuel emissions, which could mean more populations exposed to elevated HNCO concentrations.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...