ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Abstract The Cenozoic convergence between India and Asia has created Earth's thickest crust in the Pamir‐Tibet Plateau by extreme crustal shortening. Here we study the crustal structure of the Pamir and western Tian Shan, the adjacent margins of the Tajik, Tarim, and Ferghana Basins, and the Hindu Kush, using data collected by temporary seismic experiments. We derive, compare, and combine independent observations from P and S receiver functions. The obtained Moho depth varies from ~40 km below the basins to a double‐normal thickness of 65–75 km underneath the Pamir and Hindu Kush. A Moho doublet—with the deeper interface down to a depth of ~90 km—coincides with the arc of intermediate‐depth seismicity underneath the Pamir, where Asian continental lower crust delaminates and rolls back. The crust beneath most of the Central and South Pamir has a low Vp/Vs ratio (〈1.70), suggesting a dominantly felsic composition, probably a result of delamination/foundering of the mafic rocks of the lower crust. Beneath the Cenozoic gneiss domes of the Central and South Pamir, which represent extensional core complexes, the Vp/Vs ratios are moderate to high (~1.75), consistent with the previously observed, midcrustal low‐velocity zones, implying the presence of crustal partial melts. Even higher crustal average Vp/Vs ratios up to 1.90 are found in the sedimentary basins and along the Main Pamir Thrust. The ratios along the latter—the active thrust front of the Pamir—may reflect fluid accumulations within a strongly fractured fault system.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-27
    Description: Madagascar occupies a key position in the assembly and break-up of the supercontinent Gondwana. It has been used in numerous geological studies to reconstruct its original position within Gondwana and to derive plate kinematics. Seismological observations in Madagascar to date have been sparse. Using a temporary, dense seismic profile across southern Madagascar, we present the first published study of seismic anisotropy from shear-wave splitting analyses of teleseismic phases. The splitting parameters obtained show significant small-scale variation of fast polarization directions and delay times across the profile, with fast polarization rotating from NW in the center to NE in the east and west of the profile. The delay times range between 0.4 and 1.5 s. A joint inversion of waveforms at each station is applied to derive hypothetical one-layer splitting parameters. We use finite-difference, full-waveform modelling to test several hypotheses about the origin and extent of seismic anisotropy. Our observations can be explained by asthenospheric anisotropy with a fast polarization direction of 50°, approximately parallel to the absolute plate motion direction, in combination with blocks of crustal anisotropy. Predictions of seismic anisotropy as inferred from global mantle flow models or global anisotropic surface wave tomography are not in agreement with the observations. Small-scale variations of splitting parameters require significant crustal anisotropy. Considering the complex geology of Madagascar, we interpret the change in fast-axis directions as a ~150 km wide zone of ductile deformation in the crust as a result of the intense reworking of lithospheric material during the Pan-African orogeny. This fossil anisotropic pattern is underlain by asthenospheric anisotropy induced by plate motion.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-02-26
    Description: [1]  We present new seismicity images based on a two-year seismic deployment in the Pamir and SW Tien Shan. 9,532 earthquakes were detected, located and rigorously assessed in a multistage automatic procedure utilizing state-of-the-art picking algorithms, waveform cross-correlation and multi-event relocation. The obtained catalog provides new information on crustal seismicity and reveals the geometry and internal structure of the Pamir-Hindu Kush intermediate-depth seismic zone with improved detail and resolution. The relocated seismicity clearly defines at least two distinct planes, one beneath the Pamir, the other beneath the Hindu Kush, separated by a gap across which strike and dip directions change abruptly. The Pamir seismic zone forms a thin (ca.10 km width), curviplanar arc that strikes east–west and dips south at its eastern end, then progressively turns by 90 degrees to reach a north–south strike and a due eastward dip at its southwestern termination. Pamir deep seismicity outlines several streaks at depths between 70 and 240 km, with the deepest events occurring at its southwestern end. Intermediate-depth earthquakes are clearly separated from shallow crustal seismicity, which is confined to the uppermost 20–25 km. The Hindu Kush seismic zone extends from 40 to 250 km depth and generally strikes east–west, yet bends northeast, towards the Pamir, at its eastern end. It may be divided vertically into an upper and lower part separated by a gap at approx. 150 km depth. In the upper part, events form a plane that is 15–25 km thick in cross-section and dips sub-vertically north to northwest. Seismic activity is more virile in the lower part, where several distinct clusters form a complex pattern of sub-parallel planes. The observed geometry could be reconciled either with a model of two-sided subduction of Eurasian and previously underthrusted Indian continental lithosphere or by a purely Eurasian origin of both Pamir and Hindu Kush seismic zones, which necessitatesa contortion and oversteepening of the latter.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-04-09
    Description: Results obtained from S and P receiver functions produced a clear image of the top and bottom of the subducting Nazca lithosphere beneath northern Chile. Using data from the teleseismic events recorded at 15 permanent Integrated Plate Boundary Observatory Chile (IPOC) stations, we obtained new constraints on the geometry and thickness of the descending Nazca lithosphere. We observed the subducted crust of the Nazca plate at depths ranging from 50 km beneath the Coastal Cordillera down to 110 km beneath the Western Cordillera. We found significant along-strike variations in the geometry of the Nazca plate beneath northern Chile. On closer inspection, it appears that the oceanic Nazca plate is divided into two distinct segments as it descends beneath the continental South American plate. The transition from the relatively steeper (∼23°) and deeper slab to the north of 21°S to the flatter southern segment (∼19°) is shown reasonably clearly by our data. This feature could well be associated with variations in the curvature of the plate margin and the geometry of the Chile trench, which is mainly curved to the north of 21°S. We have also mapped the continental Moho of the South American plate at depths ranging between 60 and 70 km to the east of the Longitudinal Valley. Beneath the Coastal Cordillera, this boundary becomes invisible, probably due to the serpentinization of the forearc mantle wedge that reduces the velocity in the uppermost mantle. The base of the subducted Nazca plate was clearly identified as a sharp boundary in the results obtained from the P and S receiver functions. The thickness of the subducted oceanic Nazca plate, which has an age of ∼50 My, is estimated to be ∼50 km. Although this thickness is consistent with that predicted by thermal gradients, the explanation of the sharpness of the lithosphere-asthenosphere boundary may require another mechanism such as hydration or melting.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-31
    Description: The Precambrian rocks of Madagascar were formed and/or modified during continental collision known as the Pan-African orogeny. Aborted Permo-Triassic Karoo rifting and the subsequent separation from Africa and India resulted in the formation of sedimentary basins in the west and volcanic activity predominantly along the margins. Many geological studies have documented the imprint of these processes, but little was known about the deeper structure. We therefore deployed seismic stations along an SE-NW trending profile spanning nearly all geological domains of southern Madagascar. Here, we focus on the crustal structure, which we determined based on joint analysis of receiver functions and surface waves derived from ambient noise measurements. For the sedimentary basin we document a thinning of the underlying crystalline basement by up to ∼60 % to 13 km. The crustal velocity structure demonstrates that the thinning was accomplished by removal or exhumation of the lower crust. Both the Proterozoic and Archean crust have a 10 km thick upper crust and 10-12 km thick midcrust. However, in contrast to the typical structure of Proterozoic and Archean aged crust, the Archean lower crust is thicker and faster than the Proterozoic one, indicating possible magmatic intrusions; an underplated layer of 2-8 km thickness is present only below the Archean crust. The Proterozoic mafic lower crust might have been lost during continental collision by delamination or subduction, or thinned as a result of extensional collapse. Finally, the Cretaceous volcanics along the east coast are characterized by thin crust (30 km) and very large V P / V S ratios.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...