ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (4)
Collection
Language
  • English  (4)
Years
  • 1
    Publication Date: 2022-03-21
    Description: Global water models (GWMs) simulate the terrestrial water cycle, on the global scale, and are used to assess the impacts of climate change on freshwater systems. GWMs are developed within different modeling frameworks and consider different underlying hydrological processes, leading to varied model structures. Furthermore, the equations used to describe various processes take different forms and are generally accessible only from within the individual model codes. These factors have hindered a holistic and detailed understanding of how different models operate, yet such an understanding is crucial for explaining the results of model evaluation studies, understanding inter-model differences in their simulations, and identifying areas for future model development. This study provides a comprehensive overview of how state-of-the-art GWMs are designed. We analyze water storage compartments, water flows, and human water use sectors included in 16 GWMs that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b (ISIMIP2b). We develop a standard writing style for the model equations to further enhance model improvement, intercomparison, and communication. In this study, WaterGAP2 used the highest number of water storage compartments, 11, and CWatM used 10 compartments. Seven models used six compartments, while three models (JULES-W1, Mac-PDM.20, and VIC) used the lowest number, three compartments. WaterGAP2 simulates five human water use sectors, while four models (CLM4.5, CLM5.0, LPJmL, and MPI-HM) simulate only water used by humans for the irrigation sector. We conclude that even though hydrologic processes are often based on similar equations, in the end, these equations have been adjusted or have used different values for specific parameters or specific variables. Our results highlight that the predictive uncertainty of GWMs can be reduced through improvements of the existing hydrologic processes, implementation of new processes in the models, and high-quality input data.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Potsdam Institute for Climate Impact Research
    In:  ISIpedia - The open inter-sectoral impacts encyclopedi
    Publication Date: 2022-03-21
    Language: English
    Type: info:eu-repo/semantics/other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-20
    Description: Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various Representative Greenhouse Gas Concentration Pathways, all consistently bias-corrected on a 0.5° × 0.5° global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and for nearly 17,500 lakes using uncalibrated models and forcing data from the global grid where lakes are present. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-18
    Description: The environmental burden of multi-Si PV modules in China has been discussed in existing studies, however, their data are mostly from local enterprises, and none of their environmental assessment involves the decommissioning and recycling process. This study quantitatively assesses the life-cycle environmental impacts of Chinese Multi-crystalline Photovoltaic Systems involving the recycling process. The LCA software GaBi is applied to establish the LCA model and to perform the calculation, and ReCiPe method is chosen to quantify the environmental impacts. LCA of production process reveals that Polysilicon production, Cell processing and Modules assembling have relatively higher environmental impact than processes of Industrial silicon smelting and Ingot casting and Wafer slicing. Among the 14 environmental impact categories evaluated by ReCiPe methodology, the most prominent environment impacts are found as Climate Change and Human Toxicity. LCA including recycling process reveals that although recycling process has environmental impact, the recycling scenario has less environmental impact by comparing with the landfill scenario. Among the five manufacturing processes and recycling process, environmental impacts of polysilicon production, cell processing and modules assembling have relatively higher uncertainty, probably because that the environmental impact of these processes is high, and standard error of parameters such as electricity, aluminum and glass in the three processes are high. Findings of our study indicate that proper measures should be taken in the high pollution processes such as polysilicon production and cell processing. In addition, efforts should also be made to enhance the recovery rate and seek for more environmental friendly materials in the recycling process.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...