ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Schriftenreihen ausleihbar
    Schriftenreihen ausleihbar
    München : Beck
    Dazugehörige Bände
    Signatur: SR 99.0044(110)
    In: Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften
    Materialart: Schriftenreihen ausleihbar
    Seiten: 35 S.
    ISBN: 3769691924
    Serie: Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften : Reihe A, Theoretische Geodäsie 110
    Sprache: Englisch
    Standort: Kompaktmagazin unten
    Zweigbibliothek: GFZ Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-07-03
    Beschreibung: For low Earth orbit (LEO) satellites, activities such as precise orbit determination, gravity field retrieval, and thermospheric density estimation from accelerometry require modeled accelerations due to radiation pressure. To overcome inconsistencies and better understand the propagation of modeling errors into estimates, we here suggest to extend the standard analytical LEO radiation pressure model with emphasis on removing systematic errors in time-dependent radiation data products for the Sun and the Earth. Our extended unified model of Earth radiation pressure accelerations is based on hourly CERES SYN1deg data of the Earth’s outgoing radiation combined with angular distribution models. We apply this approach to the GRACE (Gravity Recovery and Climate Experiment) data. Validations with 1 year of calibrated accelerometer measurements suggest that the proposed model extension reduces RMS fits between 5 and 27%, depending on how measurements were calibrated. In contrast, we find little changes when implementing, e.g., thermal reradiation or anisotropic reflection at the satellite’s surface. The refined model can be adopted to any satellite, but insufficient knowledge of geometry and in particular surface properties remains a limitation. In an inverse approach, we therefore parametrize various combinations of possible systematic errors to investigate estimability and understand correlations of remaining inconsistencies. Using GRACE-A accelerometry data, we solve for corrections of material coefficients and CERES fluxes separately over ocean and land. These results are encouraging and suggest that certain physical radiation pressure model parameters could indeed be determined from satellite accelerometry data.
    Beschreibung: Deutsches Zentrum für Luft- und Raumfahrt http://dx.doi.org/10.13039/501100002946
    Beschreibung: ftp://ftp.tugraz.at/outgoing/ITSG/tvgogo/orbits/GRACE/
    Beschreibung: ftp://podaac-ftp.jpl.nasa.gov/allData/grace/L1B/JPL/
    Schlagwort(e): ddc:526 ; Solar radiation pressure ; Earth radiation pressure ; Satellite force models ; Parameter estimation
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-02-14
    Beschreibung: Increased Greenland ice sheet melting has an impact on global mean and regional sea level rise and the ocean circulation. In this study, we explore whether Greenland melting signatures found in ocean model simulations are visible in observations from radar altimetry, satellite gravimetry and Argo floats. We have included Greenland freshwater flux (GF) in the global Finite‐Element‐Sea ice‐Ocean Model (FESOM) for the years 1993–2016. The reference run is computed by excluding Greenland freshwater input. These experiments are performed on a low resolution (ca. 24 km) and a high resolution (ca. 6 km) eddy‐permitting mesh. For comparison with the model experiments, we use different observational data, such as Argo floats, satellite observations, and reanalyses. We find that surface GF maps into signatures in temperature and salinity down to about 100 m in the surroundings of Greenland. The simulated melting signatures are particularly visible in steric heights in Baffin Bay and Davis Strait. Here, we find an improvement of the mean square error of up to 30% when including GF. For the Nordic part of the Nordic Seas, however, we find no improvement when including GF. We compare steric heights with reanalysis data and a new setup of the inversion method from gravimetric and altimetric satellite data. We cannot confirm that the GF signatures on variables such as temperature and salinity are visible in the observations on the time scales considered. However, we find that increased model resolution often causes larger improvements than occur due to including the simulated melting effect.
    Beschreibung: Plain Language Summary: In recent years, Greenland's freshwater contribution to the ocean has increased due to the accelerated melting of its ice sheet and glaciers. In this study, we investigate the importance of this melting in reproducing the observed characteristics of the northern part of the North Atlantic Ocean in a numerical ocean model. To do that, we compare the results of two model simulations, one with and one without Greenland melt, with in situ observations or data from satellites. The inclusion of Greenland melt results in a better model representation of the ocean in terms of salinity, temperature, and sea level anomalies, especially in Baffin Bay on the west side of Greenland. We also discuss the role of a higher model resolution on the simulations in reproducing observations. Our study shows that progress in modeling how Greenland melt affects the nearby ocean is best achieved by improving model resolution so that small‐scale processes can be well represented.
    Beschreibung: Key Points: Greenland freshwater flow yields distinct signatures in temperature and salinity within the upper 100 m. Steric heights and sea level anomalies are sensitive to the Greenland freshwater intrusion especially in Baffin Bay. Increasing the spatial model resolution improves the agreement with observations more than if only Greenland meltwater is included.
    Beschreibung: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Beschreibung: https://doi.org/10.5281/zenodo.6243822
    Schlagwort(e): ddc:551.46 ; ocean modeling ; FESOM ; Greenland freshwater discharge ; ocean reanalysis ; altimetry
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-03-25
    Beschreibung: A major problem in the precise orbit determination (POD) of satellites at altitudes below 1,000 km is the modeling of the aerodynamic drag which mainly depends on the thermospheric density and causes the largest non‐gravitational acceleration. Typically, empirical thermosphere models are used to calculate density values at satellite positions but current thermosphere models cannot provide the required accuracy. Thus, unaccounted variations in the thermospheric density may lead to significantly incorrect satellite positions. For the first time, we bring together thermospheric density corrections for the NRLMSISE‐00 model in terms of scale factors with a temporal resolution of 12 hr derived from satellite laser ranging (SLR) and accelerometer measurements. Whereas, the latter are in situ information given along the satellite orbit, SLR results have to be interpreted as mean values along the orbit within the underlying time interval. From their comparison, we notice a rather similar behavior with correlations of up to 80% and more depending on altitude. During high solar activity, scale factors vary around 30% at low solar activity and up to 70% at high solar activity from the value one. In addition, we found the scaled thermospheric density decreasing stronger as the modeled density of NRLMSISE‐00. To check the reliability of the SLR‐derived scale factors, we compare the POD result of two different software packages, namely DOGS‐OC from DGFI‐TUM and GROOPS from IGG Bonn. Furthermore, a validation of our estimated scale factors with respect to an external data set proofs the high quality of the obtained results.
    Beschreibung: Plain Language Summary: Variations in the density of the thermosphere must be taken into account when modeling and predicting the motion of satellites in the near‐Earth environment. Typically, thermospheric densities at the position of satellites are provided by models, but their accuracy is limited. Due to the sensitivity of satellites orbiting the Earth in the altitude range of the thermosphere, they can be used to derive information about the thermospheric density. In this study, we compare for the first time thermospheric density corrections in terms of scale factors for the NRLMSISE‐00 model with a temporal resolution of 12 hr derived from two geodetic measurement techniques, namely satellite laser ranging (SLR) and accelerometry. Our results demonstrate that both measurement techniques can be used to derive comparable scale factors of the thermospheric density, which vary around the desired value one. This indicates to which extent the NRLMSISE‐00 model differs from the observed thermospheric density. On average, during high solar activity, the model underestimates the thermospheric density and can be scaled up using the estimated scale factors. We additionally discuss our estimated scale factors with respect to an external data set. Furthermore, we validate the approach of deriving scale factors from SLR measurements by using two independent software packages.
    Beschreibung: Key Points: For the first time, we compare scale factors of the thermospheric density derived from satellite laser ranging (SLR) and accelerometer measurements. The estimated scale factors vary by up to 30% at low solar activity and up to 70% at high solar activity from the desired value 1. Correlations of 0.7–0.8 are obtained between the estimated scale factors from SLR and accelerometer measurements depending on the height.
    Beschreibung: German Research Foundation (DFG)
    Beschreibung: Technical University of Munich (TUM)
    Schlagwort(e): ddc:551.5 ; ddc:526.1
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2021-11-03
    Beschreibung: The Gravity Recovery and Climate Experiment (GRACE) mission ended its operation in October 2017, and the GRACE Follow-On mission was launched only in May 2018, leading to approximately 1 year of data gap. Given that GRACE-type observations are exclusively providing direct estimates of total water storage change (TWSC), it would be very important to bridge the gap between these two missions. Furthermore, for many climate-related applications, it is also desirable to reconstruct TWSC prior to the GRACE period. In this study, we aim at comparing different data-driven methods and identifying the more robust alternatives for predicting GRACE-like gridded TWSC during the gap and reconstructing them to 1992 using climate inputs. To this end, we first develop a methodological framework to compare different methods such as the multiple linear regression (MLR), artificial neural network (ANN), and autoregressive exogenous (ARX) approaches. Second, metrics are developed to measure the robustness of the predictions. Finally, gridded TWSC within 26 regions are predicted and reconstructed using the identified methods. Test computations suggest that the correlation of predicted TWSC maps with observed ones is more than 0.3 higher than TWSC simulated by hydrological models, at the grid scale of 1° resolution. Furthermore, the reconstructed TWSC correctly reproduce the El Nino-Southern Oscillation (ENSO) signals. In general, while MLR does not perform best in the training process, it is more robust and could thus be a viable approach both for filling the GRACE gap and for reconstructing long-period TWSC fields globally when combined with statistical decomposition techniques.
    Schlagwort(e): 551.48 ; GRACE ; total water storage change ; predidicting method
    Sprache: Englisch
    Materialart: map
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2021-10-25
    Beschreibung: Estimates of flood susceptibility and land loss in the world's coastal regions depend on our knowledge of sea level rise (SLR) from increases in ocean mass and volume, as well as knowledge of vertical land motion. Conventional approaches to the latter include tide-gauge and Global Positioning System (GPS) measurements relative to well-anchored monuments few meters below the surface. However, in regions of rapid Holocene sedimentation, compaction of this material can add a significant component to the surface lowering. Unfortunately, this process has been difficult to quantify, especially for the shallowest material above the monument. Here we use a new technique, GPS interferometric reflectometry, to estimate the rate of this process in the Mississippi Delta and the eastern margin of the North Sea. We show that the rate of shallow compaction is comparable to or larger than the rate of global SLR, adding 35% and 65%, respectively, to the rate of relative SLR by 2100.
    Schlagwort(e): 526.3 ; 551 ; GPS ; interferometric reflectometry ; tide gauge ; coastal subsidence ; shallow subsidence ; Holocene sediment compaction
    Sprache: Englisch
    Materialart: map
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-12-01
    Beschreibung: Deutsche Forschungsgemeinschaft
    Beschreibung: poster
    Schlagwort(e): ddc:550
    Sprache: Englisch
    Materialart: doc-type:conferenceObject
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...