ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hannover : Leibniz Universität Hannover  (13)
  • English  (13)
Collection
Language
Years
  • 1
    Monograph available for loan
    Monograph available for loan
    Hannover : Leibniz Universität Hannover
    Associated volumes
    Call number: S 99.0139(327)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz-Universität Hannover
    Type of Medium: Monograph available for loan
    Pages: 139 Seiten , Illustrationen, Diagramme
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 327
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Series available for loan
    Series available for loan
    Hannover : Leibniz Universität Hannover
    Associated volumes
    Call number: S 99.0139(328)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz-Universität Hannover ; 328
    Type of Medium: Series available for loan
    Pages: 151 Seiten , Illustrationen, Diagramme
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 328
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Series available for loan
    Series available for loan
    Hannover : Leibniz Universität Hannover
    Associated volumes
    Call number: S 99.0139(325)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz-Universität Hannover
    Type of Medium: Series available for loan
    Pages: IX, 46, 27 ungezählte Seiten , Illustrationen, Diagramme
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 325
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: S 99.0139(326)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz-Universität Hannover
    Type of Medium: Series available for loan
    Pages: xvi, 160 Seiten , Illustrationen, Diagramme
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 326
    Language: English
    Note: Zusammenfassungen in deutscher und englischer Sprache
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: S 99.0139(377)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 377
    Type of Medium: Series available for loan
    Pages: XVI, 146 Seiten , Diagramme, Illustrationen, Karten
    ISBN: 978-3-7696-5295-6 , 9783769652956
    ISSN: 0065-5325
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 377
    Language: English , German
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2021 , Contents 1. Introduction 1.1. Motivation 1.2. Goal and Contributions 1.3. Structure of this Thesis 2. Fundamentals 2.1. Classification 2.2. Artificial Neural Network 2.2.1. Perceptron 2.2.2. Multilayer Percptrons 2.2.3. Training 2.2.3.1. Loss Function 2.2.3.2. Gradient Descent Optimization 2.2.3.3. Step Learning Policy 2.3. Convolution Neural Networks 2.3.1. Components 2.3.1.1. Convolution 2.3.1.2. Pooling 2.3.1.3. Batch Normalization 2.3.2. CNN for Image Classification 2.3.3. CNN for Semantic Segmentation 2.3.3.1. Fully Convolution Networks 2.3.3.2. U-Net 2.3.4. Training 2.3.5. Data Augmentation 3. Related Work 3.1. CNN in general 3.1.1. Image Classification 3.1.2. Semantic Segmentation 3.2. Land Cover Classification 3.3. Land Use Classification 3.3.1. Methods not based on CNN 3.3.2. CNN-based Methods 3.4. Discussion 3.4.1. Land Cover Classification 3.4.2. Land Use Classification 4. Methodology 4.1. Overview 4.2. Land Cover Classification 4.2.1. Network Architecture 4.2.2. Network Variants 4.2.2.1. Network without skip-connections 4.2.2.2. Network with elementwise addition skip-connections 4.2.2.3. Network with learnable skip-connections 4.2.3. Training 4.3. Hierarchical Land Use Classification 4.3.1. Polygon Shape Representation 4.3.2. Patch Preparation 4.3.2.1. Tiling 4.3.2.2. Scaling 4.3.2.3. Combination of tiling and scaling 4.3.3. Network Architecture 4.3.3.1. Base Network for Mask Representation: LuNet-lite 4.3.3.2. LuNet-lite with Multi-Task Learning 4.3.3.3. Achieving Consistency with the Class Hierarchy 4.3.3.4. Network Architecture for Implicit Representation 4.3.4. Training 4.3.4.1. LuNet-lite 4.3.4.2. LuNet-lite-MT 4.3.4.3. LuNet-lite-JO and LuNet-lite-BG-JO 4.3.5. Inference at Object Level 5. Datasets and Test Setup 5.1. Datasets 5.1.1. Hameln 5.1.2. Schleswig 5.1.3. Mecklenburg-Vorpommern (MV) 5.1.4. Vaihingen and Potsdam 5.2. Evaluation Metrics 5.3. Experimental Setup 5.3.1. Land Cover Classification 5.3.1.1. Test Setup 5.3.1.2. Overview of all Experiments 5.3.1.3. Prediction Variability of FuseNet-lite 5.3.1.4. Impact of the Hyperparameter Settings 5.3.1.5. Effectiveness of the learnable Skip-Connections 5.3.1.6. Performance of FuseNet-lite 5.3.1.7. Combining Datasets 5.3.2. Land Use Classification 5.3.2.1. Input Configurations 5.3.2.2. Test Setup 5.3.2.3. Overview of all Experiments 5.3.2.4. Prediction Variability of LuNet-lite-JO 5.3.2.5. Impact of the Hyperparameter Settings 5.3.2.6. Impact of Joint Optimization 5.3.2.7. Impact of the Polygon Representation 5.3.2.8. Impact of Land Cover Information 5.3.2.9. Impact of the Patch Generation 5.3.2.10. Evaluation on all Datasets 5.3.2.11. Combining Datasets 6. Experiments 6.1. Evaluation of Land Cover Classification 6.1.1. Prediction Variability of FuseNet-lite 6.1.2. Investigations of the Hyperparameter Settings 6.1.2.1. Base Learning Rate 6.1.2.2. Mini Batch Size 6.1.2.3. The Weight of the Penalty Term in the Focal Loss 6.1.3. Effectiveness of the learnable Skip-Connections 6.1.4. Evaluation on the individual Datasets 6.1.4.1. Hameln, Schleswig and MV 6.1.4.2. Vaihingen and Potsdam 6.1.4.3. Answers to the Questions raised in Section 5.3.1.6 6.1.5. Training on the combined Datasets 6.1.6. Discussion 6.2. Evaluation of Land Use Classification 6.2.1. Prediction Variability of LuNet-lite-JO 6.2.2. Investigations of the Hyperparameter Settings 6.2.2.1. Base Learning Rate 6.2.2.2. Mini Batch Size 6.2.2.3. The Weight of the Penalty Term in the Focal Loss 6.2.3. Impact of Joint Optimization 6.2.4. Impact of the Polygon Representation 6.2.5. Impact of Land Cover Information 6.2.6. Impact of the Patch Generation Approach 6.2.7. Evaluation on all Datasets 6.2.8. Training on combined Datasets 6.2.9. Discussion 7. Conclusion and Outlook 7.1. Conclusion 7.2. Outlook References , Sprache der Kurzfassungen: Englisch, Deutsch
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: S 99.0139(364)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 364
    Type of Medium: Series available for loan
    Pages: XVI, 121 Seiten , Illustrationen, Diagramme
    ISBN: 978-3-7696-5268-0
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Universität Hannover Nr. 364
    Language: English
    Note: Zusammenfassung in englisch und deutsch Seite v-vii
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: S 99.0139(362)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 362
    Type of Medium: Series available for loan
    Pages: XV, 143 Seiten , Illustrationen, Diagramme
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 362
    Language: English
    Note: 1 Introduction 1.1 Contributions 1.2 Thesis outline 2 Basics 2.1 Convolutional Neural Networks 2.1.1 Training 2.1.2 CNN Architectures 2.2 Active Shape Model 2.3 Monte Carlo based optimisation 3 State of the art 3.1 Data driven approaches 3.1.1 Viewpoint prediction 3.1.2 3D pose prediction 3.1.3 3D pose and shape prediction 3.2 Model driven approaches 3.2.1 Shape priors 3.2.2 Scene priors 3.2.3 Shape aware reconstruction 3.2.4 Optimisation 3.3 Discussion 4 Methodology 4.1 Overview 4.1.1 Input 4.1.2 Problem statement 4.1.3 Scene layout 4.1.4 Detection of vehicles 4.2 Subcategory-aware 3D shape prior 4.2.1 Geometrical representation 4.2.2 Mode Learning 4.3 Multi-Task CNN 4.3.1 Input branch 4.3.2 Vehicle type branch 4.3.3 Viewpoint branch 4.3.4 Keypoint/Wireframe branch 4.3.5 Training 4.4 Probabilistic vehicle reconstruction 4.4.1 3D likelihood 4.4.2 Keypoint likelihood 4.4.3 Wireframe likelihood 4.4.4 Position prior 4.4.5 Orientation prior 4.4.6 Shape prior 4.4.7 Inference 4.5 Discussion 5 Experimental setup 5.1 Objectives 5.2 Test data 5.2.1 KITTI benchmark 5.2.2 ICSENS data set 5.3 Parameter settings and training 5.3.1 Learning the ASM 5.3.2 Training of the CNN 5.4 Evaluation strategy and evaluation criteria 5.4.1 Detection 5.4.2 Multi-Task CNN 5.4.3 Probabilistic model for vehicle reconstruction 5.4.4 Comparison to related methods 6 Results and discussion 6.1 Detection 6.2 Evaluation of the CNN components 6.2.1 Evaluation of the viewpoint branch 6.2.2 Evaluation of the vehicle type branch 6.3 Ablation studies of the model components 6.3.1 Analysis of the observation likelihoods 6.3.2 Analysis of the state priors 6.4 Analysis of the full model for vehicle reconstruction 6.4.1 Evaluation of the pose 6.4.2 Evaluation of the shape 6.4.3 Analysis of further aspects 6.5 Comparison to related methods 6.6 Discussion 6.6.1 Likelihood terms 6.6.2 State priors 6.6.3 Full model 6.6.4 Inference 7 Conclusion and outlook , Sprache der Kurzfassungen: Englisch, Deutsch
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: S 99.0139(359)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 359
    Type of Medium: Series available for loan
    Pages: 134 Seiten , Diagramme, Karten
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 359
    Language: German , English
    Note: 1 Einleitung 1.1 Motivation 1.2 Zielsetzung 1.3 Gliederung 2 Verwandte Arbeiten 2.1 Grundbegriffe 2.1.1 Raumbezogene Objekte 2.1.2 Ähnlichkeit 2.1.3 Relation 2.1.4 Schema 2.2 Data-Matching 2.2.1 Klassifikation von Zuordnungsverfahren auf Objektebene 2.2.2 Herausforderungen bei der Objektzuordnung 2.2.3 Ausgewählte, merkmalsbasierte Verfahren 2.2.4 Ausgewählte, relationale Verfahren 2.3 Schema-Matching 2.3.1 Klassifikation von Zuordnungsverfahren auf Schemaebene 2.3.2 Herausforderungen bei der Zuordnung auf Schemaebene 2.3.3 Ausgewählte Schema-Matching-Verfahren im geographischen Kontext 3 Grundlagen 3.1 Ähnlichkeitsmaße 3.1.1 Geometrische Ähnlichkeit 3.1.2 Topologische Ähnlichkeit 3.1.3 Semantische Ähnlichkeit 3.2 Relationstypen 3.2.1 Relationen auf Objektebene 3.2.2 Relationen auf Schemaebene 3.3 Graphentheorie 3.3.1 Graph-Definitionen 3.3.2 Graph-Matching 3.3.3 Graph-Partitionierung / Graph-Cut 3.4 Ganzzahlige lineare Programmierung 4 Entwicklung von Data-Matching-Verfahren für verschiedene Objektgeometrien 4.1 Zuordnung von Polygonobjekten 4.1.1 Geometrischer Parameter 4.1.2 Heterogenitätsparameter 4.1.3 Erzeugung eines kombinierten Ergebnisses für das Schema-Matching 4.2 Zuordnung von unterschiedlichen Objektgeometrien 5 Entwicklung von Schema-Matching-Verfahren basierend auf Instanzdaten 5.1 Formale Problemdefinition 5.1.1 Synthetisches Beispiel 5.2 Einfache Lösungsverfahren 5.2.1 Beschränkung auf 1:1-Zuordnungen (Max-Match) 5.2.2 Beschränkung auf zwei Cluster (Min-Cut) 5.3 Einsatz von Heuristiken 5.4 Einsatz der ganzzahligen linearen Programmierung 5.4.1 Optimierungsziele und Bedingungen 5.4.2 Kombination von Optimierungszielen 5.4.3 Einführung einer festen Clustergröße (MaxScoreHardConstraintFixedSize) 5.4.4 Optimale Lösung ohne Nullcluster (MaxScoreHardConstraintFixedSizeNonEmpty) 5.4.5 Vereinfachtes Programm (MaxScoreHardConstraintFixedSizeUnique) 6 Experimente mit Realdaten und Untersuchungsergebnisse 6.1 Datenquellen und Datenvorverarbeitung 6.1.1 Datenquellen 6.1.2 Testgebiete 6.1.3 Datenvorverarbeitung 6.2 Ergebnisse des Data-Matching 6.2.1 Testgebiet A: ALKIS OSM in Hannover 6.2.2 Testgebiet B: ALKIS ATKIS in Hameln 6.2.3 Testgebiet C: ATKIS GDF in Hannover-Wedemark 6.2.4 Zusammenfassung der Data-Matching-Ergebnisse 6.3 Ergebnisse des Schema-Matching 6.3.1 Testgebiet B: ALKIS ATKIS in Hameln 6.3.2 Testgebiet A: ALKIS OSM in Hannover 6.3.3 Testgebiet C: ATKIS GDF in Hannover-Wedemark 6.3.4 Zusammenfassung aller Schema-Matching-Ergebnisse 7 Zusammenfassung und Ausblick , Kurzfassungen in Deutscher und Englischer Sprache
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: S 99.0139(339)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 339
    Type of Medium: Series available for loan
    Pages: 130 Seiten , Diagramme, Karten
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 339
    Language: English
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2018 , Contents List of figures List of tables 1 Introduction 1.1 Motivation 1.2 Meeting points for shared rides 1.3 Research questions 2 Fundamentals 2.1 Mathematical optimization 2.1.1 Linear Programming 2.1.2 Integer Programming 2.1.3 Combinatorial Optimization 2.1.4 Dynamic Programming 2.1.5 Set cover problem 2.2 Vehicle routing problems (VRP) 2.2.1 The basic VRP 2.2.2 Dial-a-ride problem (DARP) 2.3 Ride-Sharing 2.3.1 Mathematical formulation 2.3.2 Methods 2.3.3 Carpooling 3 Meeting points forshared rides: state of the art 3.1 Meeting points 3.1.1 Meeting points as destination 3.1.2 Intermediate meeting points 3.2 Knowledge gap 4 Real-world meeting points 4.1 Survey based on questionnaire 4.1.1 Setting 4.1.2 Results 4.2 Map-based survey 4.2.1 Setting 4.2.2 Results 5 Study area and data 5.1 Street network 5.2 Meeting point candidates 5.3 Public transport network 5.4 Demand 6 Meeting points for intra urban ride-sharing 6.1 Motivation 6.2 Basic matching problem 6.2.1 Mathematical model 6.2.2 Matching problem 6.3 Simulation experiments 6.3.1 Baseline scenario 6.3.2 Door-to-door service 6.3.3 Convenience-based matching 6.3.4 Meeting point reduction 6.4 Discussion 7 Meeting point recommendations for long-distance ride-sharing 7.1 Motivation 7.2 Proposed method 7.2.1 Preparation phase 7.2.2 Precomputing phase 7.2.3 Operational phase 7.3 Simulation experiment 7.3.1 Simulation setting 7.3.2 Results 7.4 Discussion 8 Meeting points for demand-responsive transportation 8.1 Motivation 8.2 Proposed method 8.2.1 Clustering 8.2.2 Meeting Point Candidates Selection 8.2.3 Route Optimization with Final Meeting Points Selection 8.3 Simulation experiment 8.3.1 Simulation setting 8.3.2 Results 8.4 Discussion 9 Conclusion Reference list Curriculum vitae
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: S 99.0139(338)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 338
    Type of Medium: Series available for loan
    Pages: 153 Seiten , Illustrationen, Diagramme
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 338
    Language: English
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2017 , Contents 1 Introduction 1.1 Motivation, research questions and overview 1.1.1 Rainfall estimation at high spatial and temporal resolution 1.1.2 Precipitation estimation with cars 1.1.3 Motion estimation from in-situ sensor data 1.2 Outline 2 Basics 2.1 Precipitation 2.1.1 Resolution, accuracy and precision of precipitation measurements 2.1.2 In-situ point measurements of precipitation by rain gauges 2.1.3 Weather radar 2.2 Wireless Sensor Networks 2.2.1 Modeling sensor networks 2.2.2 Sensor network algorithms and protocols 2.3 Statistics 2.3.1 Basics and notation 2.3.2 Regression 2.3.3 Stochastic processes 2.3.4 Stochastic filtering and the Kalman filter 2.3.5 Geostatistics 2.4 Interpolation methods 2.4.1 Inverse-Distance-Weighted 2.4.2 Ordinary kriging 2.4.3 Regression kriging 2.4.4 Cross-validation for performance assessment 2.5 Optical flow 2.5.1 Optical flow intensity conservation 2.5.2 Gradient-based optical flow 2.5.3 Probabilistic optical flow 3 Related Work 3.1 Quantitative precipitation estimation from rain gauges, weather radar and other data sources 3.1.1 Precipitation estimation with weather radar 3.1.2 Precipitation estimation by interpolation of rain gauges measurements 3.1.3 Geostatistical merging of radar and rain gauge data 3.1.4 Motion-based methods used in nowcasting 3.1.5 New data sources for precipitation estimation 3.2 Decentralized estimation with geosensor networks 3.2.1 Estimation of spatio-temporal field properties with GSN 3.2.2 Object-tracking with GSN 4 Methodology for precipitation intensity estimation at 1-min resolution 4.1 Time-window approach for estimation 4.1.1 Estimation of field motion 4.1.2 Weather radar upsampling 4.1.3 Variogram estimation 4.2 Estimation methods 4.2.1 Spatial rain gauge interpolation methods 4.2.2 Space-time symmetric rain gauge interpolation method 4.2.3 Space-time asymmetric rain gauge interpolation methods 4.2.4 Radar-rain gauge merging methods 4.2.5 Estimation methods solely based on radar 4.3 Summary 5 Methodology for precipitation intensity estimation with car sensors 5.1 Car sensors 5.1.1 Wiper Frequency Sensor 5.1.2 Xanonex optical sensor 5.1.3 Other sensors investigated 5.1.4 Experimental setup and preprocessing 5.2 Theoretical considerations for the calibration of the W-R relationship in the field . 5.3 Dependency between car speed, windscreen angle and sensor readings 5.3.1 Manually-operated windscreen wipers 5.3.2 Automatically-operated windscreen wipers 5.3.3 Xanonex optical sensor 5.4 Summary 6 Methodology for motion estimation with a geosensor network 6.1 Algorithm overview 6.2 Network and field model 6.3 Gradient constraint estimation in the network 6.3.1 Gradient constraint estimation from irregular data 6.3.2 Requirements on node stationarity and sampling synchronicity 6.3.3 Estimation of partial derivative error 6.3.4 Gradient constraint selection and derivation of gradient constraint error 6.4 Temporal coherence: Kalman filter for recursive motion estimation 6.4.1 Estimation of process noise Q 6.4.2 Estimation of measurement noise R 6.4.3 Difference to common Kalman filtering problems 6.5 Algorithm protocol 6.6 Algorithm complexity 6.6.1 Communication complexity 6.6.2 Load balance 6.6.3 Computational complexity of partial derivative estimation 6.6.4 Computational complexity of motion estimation 6.7 Summary 7 Results 7.1 Precipitation intensity estimation at 1-min resolution 7.1.1 Study area and data basis 7.1.2 Performance assessment via cross-validation 7.1.3 Exploratory and visual data analysis 7.1.4 Radar estimation and rain gauge cross-validation results 7.1.5 Summary 7.2 Precipitation intensity estimation with cars 7.2.1 Study area and data basis 7.2.2 Selection of the reference method 7.2.3 Manually-operated windscreen wipers 7.2.4 Automatically-operated windscreen wipers 7.2.5 Xanonex optical rain sensor 7.2.6 Results of experiments on the VW rain track 7.2.7 Summary 7.3 Motion estimation with a geosensor network 7.3.1 Study Area, sensor network and deployment strategies 7.3.2 Error measures 7.3.3 Setting the filter parameters 7.3.4 Results - simulated field 7.3.5 Results - radar field 7.3.6 Summary 8 Summary and discussion of the research hypotheses 8.1 Discussion of research hypotheses 1 and 2: 1-min precipitation intensity estimation 8.2 Discussion of research hypothesis 3: precipitation estimation with cars 8.3 Discussion of research hypothesis 4: decentralized motion estimation 8.4 Outlook 9 Appendix 9.1 Discussion on the 'frozen field' distance function 9.2 Executable Kalman filter equations for the motion estimation algorithm 9.3 Controllability and Observability of the Kalman filter for motion estimation List of Figures List of Tables References
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...