ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Munksgaard International Publishers
    Physiologia plantarum 122 (2004), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The mechanisms regulating stomatal response following exposure to low (5°C) soil temperature were investigated in aspen (Populus tremuloides Michx.) seedlings. Low soil temperature reduced stomatal conductance within 4 h, but did not alter shoot xylem pressure potential within 24 h. The xylem sap composition was altered and its pH increased from 6.5 to 7.1 within the initial 4 h of the low temperature treatment. However, the increase in abscisic acid (ABA) concentration in xylem sap was observed later, after 8 h of treatment. These changes were accompanied by a reduction in the electrical conductivity and an increase in the osmotic potential of the xylem sap. The timing of physiological responses to low soil temperature suggests that the rapid pH change of the xylem sap and accompanying changes in ion concentration were the initial factors which triggered stomatal closure in low temperature-treated seedlings, and that the role of the more slowly accumulating ABA was likely to reinforce the stomatal closure. When leaf discs were exposed to xylem sap extracted from low soil temperature-treated plants, stomatal aperture was negatively correlated with ABA and positively correlated with K+ concentrations of the xylem sap. The stomatal opening in the leaf discs linearly increased in response to exogenous KCl concentrations when K+ concentrations were in the similar range to those detected in the xylem sap. The lowest concentration of exogenous ABA to induce stomatal closure was several-fold higher compared with the concentration present in the xylem sap.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, US : Munksgaard International Publishers
    Physiologia plantarum 120 (2004), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Within its wide range across Canada, jack pine is exposed to salinity from both natural and anthropogenic sources. To compare the effects of Cl and SO4 on salt injury, sand and solution-culture grown jack pine (Pinus banksiana Lamb.) seedlings were treated with nutrient solutions containing 60 or 120 mM NaCl, 60 mM Na2SO4, or a mixture of 60 mM NaCl and 30 mM Na2SO4. After 5 weeks of salt treatments, concentrations of Cl, K, Na, and SO4 were determined in roots, stem and needles of the current and previous years growth, and in necrotic needles. To determine the role of water uptake in the absorption and translocation of salts in plants, total transpiration was measured as the loss of water from a sealed system and related to total plant uptake of Cl, Na, and SO4. Sodium uptake and root-to-shoot transport rates were greater in treatments containing Cl. A delay in root-to-shoot transport of both Na and Cl indicates retention of these ions in the roots. Electrolyte leakage of needles was more closely related to treatment Cl concentrations than treatment Na concentrations. The transport of Na ions to the shoot was related to the presence of Cl, but was not related to transpiration rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 87 (1993), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: White spruce [Picea glauca (Moench) Voss.] seedlings were grown in solution culture and treated with 20 mg I-1 triadimefon [1-(chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)-2-butanol] for 4 weeks and then subjected to osmotic stress with polyethylene glycol 3350. Water potentials and electrolyte leakage were measured in control and triadimefon-treated seedlings before and after the plants were subjected to osmotic stress. The plasma membranes were isolated from needles to study their lipid composition and the activity of plasma-membrane bound ATPase. Triadimefon treatment reduced water potentials and increased leakage of electrolytes from seedlings. However, when the seedlings were exposed to osmotic stress, triadimefon-treated plants maintained higher water potentials and leaked less electrolytes compared with the control plants. Both triadimefon and osmotic stress treatments inhibited the activity of plasma membrane-bound ATPase and altered the composition of free sterols in the plasma membranes. Triadimefon-treated plants contained traces of campesterol, which was not present in control. Osmotic stress drastically reduced phospholipid:protein and sterol:protein ratios and increased sterol:phospholipid ratios in the plasma membranes
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 112 (2001), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Using polyclonal antibodies raised against human serum albumin (HSA), a 70-kDa microsomal protein with an isoelectric point of approximately 6.5 was detected in spinach (Spinacia oleracea L.). The protein was purified by selective ammonium sulfate precipitation and anion exchange HPLC. The protein shared 100% identity with the first 15 amino acids at the NH2 terminus of HSA, including the X-X-H amino acid region, which was identified in HSA as being responsible for binding of copper, zinc, indole derivatives and calcium. Blue staining of the protein with the cationic carbocyanine dye ‘Stains-all’ and 45Ca overlay following SDS-PAGE also suggest that the 70-kDa plant protein binds calcium. The protein reacted positively with carbohydrate specific thymol stain, and the carbohydrates associated with the protein were identified by gas chromatography-mass spectrometry (GC-MS) as galactose and galacturonic acid. The 70-kDa plant protein was present in the detergent-poor phase following Triton X-114 extraction of the microsomal proteins. Cell fractionation using continuous sucrose gradients showed that the protein is present in membrane fractions with high activity of endoplasmic reticulum (ER) and Golgi marker enzymes. Using nitrocellulose tissue prints probed with anti-HSA antibodies, we demonstrated that the protein is present in the apoplastic space of petioles, suggesting that the protein is secreted to the apoplast of cortex cells in plants. Localization and binding properties suggest that the plant protein identified in the present study may participate in secretion processes, possibly involved with the transport of precursors required for cell-wall synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Munksgaard International Publishers
    Physiologia plantarum 121 (2004), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: To study the effects of water-deficit stress on root water flow properties in trembling aspen (Populus tremuloides Michx.), seedlings were grown in solution culture and subjected to water-deficit stress by placing their roots in sealed high humidity chambers. After 17 h of stress treatment, seedlings showed mild stress (MS) symptoms with a decline in shoot water potentials. Within 20 h, shoot water potentials rapidly declined, and severe stress (SS) symptoms were present. Root hydraulic conductivity (Lpr) increased more than two-fold and the relative concentration of apoplastic tracer dye trisodium 3-hydroxy-5, 8, 10-pyrenetrisulphonate (PTS3) in xylem exudate decreased by 73.6% in MS seedlings. Conversely, Lpr decreased (55.3%) and PTS3 increased (28.6%) in SS seedlings. Treatment of roots with 0.1 mM mercuric chloride decreased root volume flow density (Jv) by about 29.0% in control and MS plants with no decrease measured in SS seedlings. Mercuric chloride also increased PTS3 concentration in xylem exudate of control (59%) and MS (86%) seedlings with no change observed in SS plants. The results suggest that aquaporin-mediated transport is important in the regulation of root water flow under drought stress and that root water flow properties are strongly affected by the stress level. Regulation of root water flow may represent an important drought-stress resistance mechanism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Munksgaard International Publishers
    Physiologia plantarum 117 (2003), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effects of sodium fluoride (0.3, 5 and 10 mM NaF) on root hydraulic conductivity, and gas exchange processes were examined in aspen (Populus tremuloides Michx.) seedlings grown in solution culture. A long-term exposure of roots to NaF significantly decreased root hydraulic conductivity (Lp) and stomatal conductance ( gs). Root absorbed NaF significantly affected electrolyte leakage in leaf tissues and substantially restricted leaf expansion. NaF did not significantly affect leaf chlorophyll contents but decreased net photosynthesis (Pn). A short-term exposure of excised roots to 5 mM NaF and KF significantly decreased root water flow (Qv) with a concomitant decline in root respiration and reduced gs when applied through intact roots or excised stems. The same molar concentration of NaCl also decreased Qv and gs in intact seedlings, but to a lesser extent than NaF or KF, and did not significantly affect root respiration. The results suggest that fluoride metabolically inhibited Qv or Lp, probably by affecting water channel activity. We suggest that the metabolic inhibition of Lp by root-absorbed fluoride affected gas exchange and leaf expansion in aspen seedlings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 101 (1997), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: White spruce [Picea glauca (Moench) Voss.] seedlings were used to study the changes in cell wall composition and elasticity in mature needles before and after the resumption of growth following winter dormancy. Dormant seedlings showed high cell wall elasticity that decreased after the resumption of shoot growth. Cell wall hemicellulose content increased 3 days after planting and decreased after the buds flushed. Non-cellulosic glucose and arabinose were the sugars showing the most pronounced changes related to shoot growth. Arabinose was the most abundant sugar residue in the pectin and hemicellulose fractions and it decreased until day 10 after planting. At the same time, the levels of glucose in pectin and hemicellulose increased. The results provide evidence for cell wall carbohydrate turnover in dormant and active seedlings before and after bud flushing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 97 (1996), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Seedlings of white spruce (Picea glauca [Moench] Voss.) were treated with triadimefon solution applied to the soil, and their early responses studied from 12 h to 7 days after treatment. Transpiration rates declined and respiration rates increased immediately after the commencement of triadimefon treatment. Photosynthetic rates declined less than transpiration rates, resulting in an increase in water use efficiency, whereas root and shoot water potentials remained unchanged during the first 5 days of triadimefon treatment. Triadimefon decreased root hydraulic conductivity and inhibited the activity of the plasma membrane ATPase. In addition, triadimefon-treated roots drastically increased the ratios between free sterols and sterol esters and decreased the ratios between sterol esters and acylated sterol glycosides.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 79 (1990), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Black spruce (Picea mariana Mill. B. S. P.) rooted cuttings were grown in solution culture and preconditioned by osmotically stressing plants with polyethylene glycol. After relief from preconditioning stress, water relations, membrane leakiness, and the composition of lipids and fatty acids were compared in preconditioned and control, unconditioned plants. Both groups of plants were subsequently subjected to a severe osmotic stress with polyethylene glycol and examined again. Osmotic stress decreased shoot water potentials and increased the leakage of electrolytes from shoots of stressed, compared with unstressed, plants. However, both unstressed and stressed preconditioned plants leaked less electrolytes compared with unconditioned plants. Changes in sterol, phospholipid and glycolipid composition were observed in preconditioned unstressed and stressed plants. Sterol and phospholipid levels de clined as a result of stress, and preconditioning resulted in a decline in sterol: phospholipid ratios in plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 82 (1991), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: White spruce [Picea glauca (Moench) Voss] seedlings were preconditioned by subjecting them to 3 cycles of a mild drought stress. After 1 week of stress relief their water status, soluble carbohydrate content and cell wall composition in newly formed needles were examined and compared with those in control seedlings. Both preconditioned and control seedlings were subsequently subjected to a severe drought stress and again analyzed. Preconditioning treatment both before and during subsequent stress exposure lowered osmotic potentials at full hydration, and after the loss of turgor, decreased lignin content and increased hemicellulose content of the cell walls. Severe drought had similar but more drastic effects on seedling water relations, sugar accumulation and cell wall hemicellulose content; it also decreased cell wall pectin levels. The decrease in pectin levels was accompanied by a loss of galactose and glucose from pectic substances. Little change in cellulose content was observed as a result of preconditioning and severe drought.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...