ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-25
    Description: An instability involving the resonant interaction of a Rossby wave and a Kelvin wave has been proposed to drive equatorial superrotation in planetary atmospheres with a substantially smaller radius or a smaller rotation rate than Earth, that is, with a large thermal Rossby number. To pursue this idea, this paper investigates the equilibration mechanism of Kelvin–Rossby instability by simulating the unforced initial-value problem in a shallow-water model and in a multilevel primitive equation model. Although the instability produces equatorward momentum fluxes in both models, only the multilevel model is found to superrotate. It is argued that the shortcoming of the shallow-water model is due to its difficulty in representing Kelvin wave breaking and dissipation, which is crucial for accelerating the flow in the tropics. In the absence of dissipation, the zonal momentum fluxed into the tropics is contained in the eddy contribution to the mass-weighted zonal wind rather than the zonal-mean zonal flow itself. In the shallow-water model, the zonal-mean zonal flow is only changed by the eddy potential vorticity flux, which is very small in our flow in the tropics and can only decelerate the flow in the absence of external vorticity stirring.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-15
    Description: A principal component analysis of the Northern Hemisphere extratropical zonal-mean tropopause variability at intraseasonal time scales is presented in this work. Wavy deformations of the tropopause dominate this variability and explain significantly more variance than changes in the extratropical-mean tropopause height. The first mode is well correlated with the zonal index. Analysis of the dynamical evolution of the modes shows that tropopause deformations are caused by anomalous wave breaking at the tropopause level occurring in a preexisting anomalous stratospheric polar vortex. Specifically, an intense (weak) polar vortex is associated with a rising (sinking) of the polar tropopause, while anomalous wave breaking in the midlatitudes produces a dipolar tropopause change that is consistent with the anomalous meridional eddy flux of quasigeostrophic potential vorticity. These two forcings operate on different time scales and can be separated when the data are filtered at high or low frequency. Baroclinic equilibration seems to play a small role in the extratropical internal tropopause variability and the impact of tropospheric and stratospheric dynamics is quantitatively similar. A similar analysis for the Southern Hemisphere extratropics displays the same qualitative behavior.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-11-01
    Description: In Earth’s atmosphere eddy momentum fluxes (EMFs) are largest in the upper troposphere, but EMFs in the lower troposphere, although modest in amplitude, have an intriguing structure. To document this structure, the EMFs in the lower tropospheres of a two-layer quasigeostrophic model, a primitive equation model, and the Southern Hemisphere of a reanalysis dataset are investigated. The lower-tropospheric EMFs are very similar in the cores of the jets in both models and the reanalysis data, with EMF divergence (opposing the upper-tropospheric convergence) due to relatively long waves with slow eastward phase speeds and EMF divergence (as in the upper troposphere) due to shorter waves with faster eastward phase speeds. As the two-layer model is able to capture the EMF divergence by long waves, a qualitative picture of the underlying dynamics is proposed that relies on the negative potential vorticity gradient in the lower layer of the model. Eddies excited by baroclinic instability mix efficiently through a wide region in the lower layer, centered on the latitude of maximum westerlies and encompassing the lower-layer critical latitudes. Near these critical latitudes, the mixing is enhanced, resulting in increased EMF convergence, with compensating EMF divergence in the center of the jet. The EMF convergence at faster phase speeds is due to deep eddies that propagate on the upper-tropospheric potential vorticity gradient.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-04-01
    Description: This paper investigates the coupling between the rotational and divergent circulations aiming to explain the observations that show that the tropical eddy momentum flux is due to correlations between divergent eddy meridional velocities and rotational eddy zonal velocities. A simple linear model in which the observed eddy divergence field is used to force the vorticity equation can reproduce quite well the observed tropical eddy momentum flux. The eddy momentum flux in the model shows little sensitivity to the basic-state winds and is mainly determined by the characteristics of the divergent forcing. Vortex stretching and divergent advection of planetary vorticity produce eddy momentum flux contributions with the same sign but the former forcing dominates. It is shown that the main factor affecting the direction of the eddy momentum flux response to both forcings is the meridional tilt of the divergence phase lines, albeit with an opposite sign to the classical relation between rotational momentum flux and streamfunction phase tilt. How this divergent structure is determined remains an open question.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-04-01
    Description: This work investigates the role played by the divergent circulation for meridional eddy momentum transport in the tropical atmosphere. It is shown that the eddy momentum flux in the deep tropics arises primarily from correlations between the divergent eddy meridional velocity and the rotational eddy zonal velocity. Consistent with previous studies, this transport is dominated by the stationary wave component, associated with correlations between the zonal structure of the Hadley cell (zonal anomalies in the meridional overturning) and the climatological-mean Rossby gyres. This eddy momentum flux decomposition implies a different mechanism of eddy momentum convergence from the extratropics, associated with upper-level mass convergence (divergence) over sectors with anomalous westerlies (easterlies). By itself, this meridional transport would only increase (decrease) isentropic thickness over regions with anomalous westerly (easterly) zonal flow. The actual momentum mixing is due to vertical (cross isentropic) advection, pointing to the key role of diabatic processes for eddy–mean flow interaction in the tropics.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-07-01
    Description: This paper investigates the role of zonal propagation for the equilibration of zonally varying flow. It is hypothesized that there exist two ideal limits, for very small or very large group speed. In the first limit the eddies equilibrate locally with the forcing, while in the second limit the equilibration can only be understood in a global sense. To understand these two limits and to assess which is more relevant for the extratropical troposphere, a series of idealized experiments that involves changing the magnitude of the uniform zonal wind is performed. The results of the idealized model experiments suggest that the actual troposphere is likely to be in a transition regime between the two limits, but perhaps closer to the global than the local limit. Near the global limit, both the eddy amplitude and local baroclinicity over the baroclinic zone are strongly affected by the amount of upstream seeding. When the propagation speed is reduced relative to the control run, the zonal mean eddy activity decreases because the residence time increases more over the stable part of the channel than along the baroclinic zone. With the decrease in upstream seeding, the local supercriticality along the baroclinic zone increases, although the increase is moderate. The decrease in seeding and increase in baroclinicity partially offset the effects of each other, leading to only small changes in the maximum eddy amplitude downstream of the baroclinic zone. Changes in upstream seeding can also be achieved by enhanced damping. When the eddies are locally damped, the baroclinicity is also enhanced downstream of the damping region due to reduced eddy fluxes. For typical parameters, the recovery of the eddy amplitude occurs over very long distances. Based on these idealized results, it is argued that the coexistence of enhanced baroclinicity and weaker eddy amplitude over the Pacific storm track, as compared to the Atlantic storm track, is consistent with the effects of strong eddy damping over Asia.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-04-01
    Description: Baroclinic adjustment and turbulent diffusion are two popular paradigms used to describe the eddy–mean flow closure in the two-layer model, with very different implications for the criticality of the system. Baroclinic adjustment postulates the existence of preferred equilibrium states, while the turbulent diffusion framework predicts smooth variations of the mean state with the forcing. This study investigates the relevance of each paradigm over a wide range of the parameter space, including very strong changes in the diabatic forcing. The results confirm the weak sensitivity of the criticality against changes in the forcing noted by baroclinic adjustment studies but do not support the existence of preferred equilibrium states. The weak sensitivity of the mean state when the forcing is varied is consistent with the steepness of the diffusive closure predicted by homogeneous turbulence theories. These turbulent predictions have been tested locally against observed empirical diffusivities, extending a previous study by Pavan and Held. The results suggest that a local closure works well, even at low criticalities when the eddy momentum fluxes are important, provided that the criticality is generalized to include the effect of the meridional curvature potential vorticity (PV) gradient. When friction is weak, the development of this curvature may be important for halting the cascade and making the flow more linear. A remarkable difference from previous homogeneous results is that the empirical closure does not appear to steepen at low criticality. This may be due to the use of a generalized criticality or to the distinction between a local and domain-averaged closure.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-01-01
    Description: This paper discusses the sensitivity of the isentropic slope in a primitive equation dry model forced with Newtonian cooling when the heating is varied. This is done in two different ways, changing either the radiative equilibrium baroclinicity or the diabatic time scale for the zonal-mean flow. When the radiative equilibrium baroclinicity is changed, the isentropic slope remains insensitive against changes in the forcing, in agreement with previous results. However, the isentropic slope steepens when the diabatic heating rate is accelerated for the zonal-mean flow. Changes in the ratio between the interior and the boundary diffusivities as the diabatic heating rate is varied appear to be responsible for the violation of the constant criticality constraint in this model. Theoretical arguments are used to relate the sensitivity of the isentropic slope to that of the isentropic mass flux, which also remains constant when the radiative-equilibrium baroclinicity is changed. The sensitivity of the isentropic mass flux on the heating depends on how the gross stability changes. Bulk stabilities calculated from isobaric averages and gross stabilities estimated from isentropic diagnostics are not necessarily equivalent because a significant part of the return flow occurs at potential temperatures colder than the mean surface temperature.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-09-22
    Description: Friction is an important parameter in atmospheric modeling that may affect internal variability in a number of ways. It directly damps the annular-mode variability, but it also helps to maintain it through baroclinic feedbacks. Also, by determining the mean strength and position of the midlatitude jet, friction affects the internal dynamics that drive this variability. This work investigates the relevance of all of these factors for the sensitivity of the persistence of annular variability to changes in the zonal-mean friction using an idealized quasigeostrophic two-layer model. This model produces realistic variability, yet it is so simple that one can cleanly separate the different effects. It is found that the sensitivity of persistence to friction is dominated by the direct damping effect, while changes in the eddy momentum forcing and in the mean jet are not as important. As in more complex models, the persistence of the jet anomalies in this model decreases at all lags with increasing friction, but the long-time decorrelation decay rate of these anomalies is remarkably insensitive to friction. Although this implies that the eddy feedback must increase with friction to maintain the anomalies against the enhanced damping, it is shown that this is not due to baroclinic effects. A model that assumes that the eddy forcing does not change with friction can reproduce reasonably well the numerical results. The crucial factor that determines the model’s sensitivity to friction is the spectral structure of the eddy momentum forcing.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...