ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Call number: PIK N 456-05-0296
    In: Forschungsbericht
    Type of Medium: Monograph available for loan
    Pages: IV, 142 S.
    Edition: Als Ms. gedr
    Series Statement: Forschungsbericht / Deutsches Zentrum für Luft- und Raumfahrt 2005,3
    Note: Zugl.: München, Univ., Diss., 2005
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-07
    Description: During the HALO-(AC)3 campaign, the hyperspectral and polarized imaging system specMACS was integrated into the German research aircraft HALO. This dataset contains videos with measurements of the two polarization resolving cameras of specMACS which measure the two-dimensional distribution of the I, Q, and U components of the Stokes vector at red, green, and blue color channels with an acquisition rate of 8Hz. Both cameras are operated in a nadir looking perspective and have a combined field of view of 91 x 117 degree in along and across track direction. The videos include RGB images as well as images of the degree of linear polarization derived from the measurements.
    Keywords: AC; AC3; airborne measurements; Aircraft; Arctic; Arctic Amplification; Atmospheric and Earth System Research with HALO – High Altitude and Long Range Research Aircraft; Date/Time of event; Event label; HALO; HALO_220311a; HALO_220312a; HALO_220313a; HALO_220314a; HALO_220315a; HALO_220316a; HALO_220320a; HALO_220321a; HALO_220328a; HALO_220329a; HALO_220330a; HALO_220401a; HALO_220404a; HALO_220407a; HALO_220408a; HALO_220410a; HALO_220411a; HALO_220412a; HALO_220414a; HALO_AC3; HALO-(AC)³; Hyperspectral and polarization resolving imager, Munich Aerosol Cloud Scanner; Latitude of event; Longitude of event; Optional event label; polarization; RF01; RF02; RF03; RF04; RF05; RF06; RF07; RF08; RF09; RF10; RF11; RF12; RF13; RF14; RF15; RF16; RF17; RF18; RF19; specMACS; SPP1294; Video, earth surface (water, ice, land); Video, earth surface (water, ice, land) (File Size)
    Type: Dataset
    Format: text/tab-separated-values, 38 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-07
    Description: During the HALO-(AC)3 campaign, the hyperspectral and polarized imaging system specMACS was integrated into the German research aircraft HALO in a nadir-looking perspective. This dataset contains calibrated spectral radiances in mW/(m2 nm sr) for the shortwave infrared wavelength range between about 1000 and 2400nm measured by the SWIR spectrometer of specMACS. The spectrometer has 320 spatial pixels along a spatial line oriented in across-track direction with a field of view of 35.5 degree and measures at an acquisition frequency of 30Hz. The calibration of the data was performed as described in Ewald et al. (2016). Because of the large size of the data, the calibrated radiances for each research flight were split into different files along the wavelength dimension. Each dataset contains measurements of 20 wavelength channels for the wavelength range given in the file name. Additionally, the dataset includes georeferencing information with viewing zenith and viewing azimuth angles as well as sensor latitude, longitude, and height above WGS84 for every measured pixel as a separate file for every flight. Note that during the first three flights there was some icing of the window in front of the cameras which is visible in the data.
    Keywords: AC; AC3; airborne measurements; Aircraft; Arctic; Arctic Amplification; Atmospheric and Earth System Research with HALO – High Altitude and Long Range Research Aircraft; DATE/TIME; Event label; File content; HALO; HALO_220311a; HALO_220312a; HALO_220313a; HALO_220314a; HALO_220315a; HALO_220316a; HALO_220320a; HALO_220321a; HALO_220328a; HALO_220329a; HALO_220330a; HALO_220401a; HALO_220404a; HALO_220407a; HALO_220408a; HALO_220410a; HALO_220411a; HALO_220412a; HALO_220414a; HALO_AC3; HALO-(AC)³; Hyperspectral and polarization resolving imager, Munich Aerosol Cloud Scanner; Latitude of event; Longitude of event; netCDF file; Optional event label; RF01; RF02; RF03; RF04; RF05; RF06; RF07; RF08; RF09; RF10; RF11; RF12; RF13; RF14; RF15; RF16; RF17; RF18; RF19; specMACS; spectral radiance; SPP1294
    Type: Dataset
    Format: text/tab-separated-values, 456 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stevens, B., Bony, S., Farrell, D., Ament, F., Blyth, A., Fairall, C., Karstensen, J., Quinn, P. K., Speich, S., Acquistapace, C., Aemisegger, F., Albright, A. L., Bellenger, H., Bodenschatz, E., Caesar, K.-A., Chewitt-Lucas, R., de Boer, G., Delanoë, J., Denby, L., Ewald, F., Fildier, B., Forde, M., George, G., Gross, S., Hagen, M., Hausold, A., Heywood, K. J., Hirsch, L., Jacob, M., Jansen, F., Kinne, S., Klocke, D., Kölling, T., Konow, H., Lothon, M., Mohr, W., Naumann, A. K., Nuijens, L., Olivier, L., Pincus, R., Pöhlker, M., Reverdin, G., Roberts, G., Schnitt, S., Schulz, H., Siebesma, A. P., Stephan, C. C., Sullivan, P., Touzé-Peiffer, L., Vial, J., Vogel, R., Zuidema, P., Alexander, N., Alves, L., Arixi, S., Asmath, H., Bagheri, G., Baier, K., Bailey, A., Baranowski, D., Baron, A., Barrau, S., Barrett, P. A., Batier, F., Behrendt, A., Bendinger, A., Beucher, F., Bigorre, S., Blades, E., Blossey, P., Bock, O., Böing, S., Bosser, P., Bourras, D., Bouruet-Aubertot, P., Bower, K., Branellec, P., Branger, H., Brennek, M., Brewer, A., Brilouet , P.-E., Brügmann, B., Buehler, S. A., Burke, E., Burton, R., Calmer, R., Canonici, J.-C., Carton, X., Cato Jr., G., Charles, J. A., Chazette, P., Chen, Y., Chilinski, M. T., Choularton, T., Chuang, P., Clarke, S., Coe, H., Cornet, C., Coutris, P., Couvreux, F., Crewell, S., Cronin, T., Cui, Z., Cuypers, Y., Daley, A., Damerell, G. M., Dauhut, T., Deneke, H., Desbios, J.-P., Dörner, S., Donner, S., Douet, V., Drushka, K., Dütsch, M., Ehrlich, A., Emanuel, K., Emmanouilidis, A., Etienne, J.-C., Etienne-Leblanc, S., Faure, G., Feingold, G., Ferrero, L., Fix, A., Flamant, C., Flatau, P. J., Foltz, G. R., Forster, L., Furtuna, I., Gadian, A., Galewsky, J., Gallagher, M., Gallimore, P., Gaston, C., Gentemann, C., Geyskens, N., Giez, A., Gollop, J., Gouirand, I., Gourbeyre, C., de Graaf, D., de Groot, G. E., Grosz, R., Güttler, J., Gutleben, M., Hall, K., Harris, G., Helfer, K. C., Henze, D., Herbert, C., Holanda, B., Ibanez-Landeta, A., Intrieri, J., Iyer, S., Julien, F., Kalesse, H., Kazil, J., Kellman, A., Kidane, A. T., Kirchner, U., Klingebiel, M., Körner, M., Kremper, L. A., Kretzschmar, J., Krüger, O., Kumala, W., Kurz, A., L'Hégaret, P., Labaste, M., Lachlan-Cope, T., Laing, A., Landschützer, P., Lang, T., Lange, D., Lange, I., Laplace, C., Lavik, G., Laxenaire, R., Le Bihan, C., Leandro, M., Lefevre, N., Lena, M., Lenschow, D., Li, Q., Lloyd, G., Los, S., Losi, N., Lovell, O., Luneau, C., Makuch, P., Malinowski, S., Manta, G., Marinou, E., Marsden, N., Masson, S., Maury, N., Mayer, B., Mayers-Als, M., Mazel, C., McGeary, W., McWilliams, J. C., Mech, M., Mehlmann, M., Meroni, A. N., Mieslinger, T., Minikin, A., Minnett, P., Möller, G., Morfa Avalos, Y., Muller, C., Musat, I., Napoli, A., Neuberger, A., Noisel, C., Noone, D., Nordsiek, F., Nowak, J. L., Oswald, L., Parker, D. J., Peck, C., Person, R., Philippi, M., Plueddemann, A., Pöhlker, C., Pörtge, V., Pöschl, U., Pologne, L., Posyniak, M., Prange, M., Quiñones Meléndez, E., Radtke, J., Ramage, K., Reimann, J., Renault, L., Reus, K., Reyes, A., Ribbe, J., Ringel, M., Ritschel, M., Rocha, C. B., Rochetin, N., Röttenbacher, J., Rollo, C., Royer, H., Sadoulet, P., Saffin, L., Sandiford, S., Sandu, I., Schäfer, M., Schemann, V., Schirmacher, I., Schlenczek, O., Schmidt, J., Schröder, M., Schwarzenboeck, A., Sealy, A., Senff, C. J., Serikov, I., Shohan, S., Siddle, E., Smirnov, A., Späth, F., Spooner, B., Stolla, M. K., Szkółka, W., de Szoeke, S. P., Tarot, S., Tetoni, E., Thompson, E., Thomson, J., Tomassini, L., Totems, J., Ubele, A. A., Villiger, L., von Arx, J., Wagner, T., Walther, A., Webber, B., Wendisch, M., Whitehall, S., Wiltshire, A., Wing, A. A., Wirth, M., Wiskandt, J., Wolf, K., Worbes, L., Wright, E., Wulfmeyer, V., Young, S., Zhang, C., Zhang, D., Ziemen, F., Zinner, T., and Zöger, M.: EUREC4A. Earth System Science Data, 13(8), (2021): 4067–4119, https://doi.org/10.5194/essd-13-4067-2021.
    Description: The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement.
    Description: This research has been supported by the people and government of Barbados; the Max Planck Society and its supporting members; the German Research Foundation (DFG) and the German Federal Ministry of Education and Research (grant nos. GPF18-1_69 and GPF18-2_50); the European Research Council (ERC) advanced grant EUREC4A (grant agreement no. 694768) under the European Union’s Horizon 2020 research and innovation program (H2020), with additional support from CNES (the French National Centre for Space Studies) through the EECLAT proposal, Météo-France, the CONSTRAIN H2020 project (grant agreement no. 820829), and the French AERIS Research Infrastructure; the Natural Environment Research Council (NE/S015868/1, NE/S015752/1, and NE/S015779/1); ERC under the European Union’s H2020 program (COMPASS, advanced grant agreement no. 74110); the French national program LEFE INSU, by IFREMER, the French research fleet, CNES, the French research infrastructures AERIS and ODATIS, IPSL, the Chaire Chanel program of the Geosciences Department at ENS, and the European Union's Horizon 2020 research and innovation program under grant agreement no. 817578 TRIATLAS; NOAA’s Climate Variability and Prediction Program within the Climate Program Office (grant nos. GC19-305 and GC19-301); NOAA cooperative agreement NA15OAR4320063; NOAA's Climate Program Office and base funds to NOAA/AOML's Physical Oceanography Division; Swiss National Science Foundation grant no. 188731; the UAS Program Office, Climate Program Office, and Physical Sciences Laboratory and by the US National Science Foundation (NSF) through grant AGS-1938108; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC 2037 “CLICCS – Climate, Climatic Change, and Society” – project no. 390683824; and Poland’s National Science Centre grant no. UMO-2018/30/M/ST10/00674 and Foundation for Polish Science grant no. POIR.04.04.00-00-3FD6/17-02.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-08-01
    Description: The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft, each with a sophisticated set of remote sensing and in situ instruments, and coordinated with a suite of ground-based measurements. A total of 49 research flights were performed, including, for the first time, coordinated flights of the four aircraft: the German High Altitude and Long Range Research Aircraft (HALO), the Deutsches Zentrum für Luft- und Raumfahrt (DLR) Dassault Falcon 20, the French Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) Falcon 20, and the British Facility for Airborne Atmospheric Measurements (FAAM) BAe 146. The observation period from 17 September to 22 October 2016 with frequently occurring extratropical and tropical cyclones was ideal for investigating midlatitude weather over the North Atlantic. NAWDEX featured three sequences of upstream triggers of waveguide disturbances, as well as their dynamic interaction with the jet stream, subsequent development, and eventual downstream weather impact on Europe. Examples are presented to highlight the wealth of phenomena that were sampled, the comprehensive coverage, and the multifaceted nature of the measurements. This unique dataset forms the basis for future case studies and detailed evaluations of weather and climate predictions to improve our understanding of diabatic influences on Rossby waves and the downstream impacts of weather systems affecting Europe.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-10-01
    Description: Between 1 September and 4 October 2014, a combined airborne and ground-based measurement campaign was conducted to study tropical deep convective clouds over the Brazilian Amazon rain forest. The new German research aircraft, High Altitude and Long Range Research Aircraft (HALO), a modified Gulfstream G550, and extensive ground-based instrumentation were deployed in and near Manaus (State of Amazonas). The campaign was part of the German–Brazilian Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON– CHUVA) venture to quantify aerosol–cloud–precipitation interactions and their thermodynamic, dynamic, and radiative effects by in situ and remote sensing measurements over Amazonia. The ACRIDICON–CHUVA field observations were carried out in cooperation with the second intensive operating period of Green Ocean Amazon 2014/15 (GoAmazon2014/5). In this paper we focus on the airborne data measured on HALO, which was equipped with about 30 in situ and remote sensing instruments for meteorological, trace gas, aerosol, cloud, precipitation, and spectral solar radiation measurements. Fourteen research flights with a total duration of 96 flight hours were performed. Five scientific topics were pursued: 1) cloud vertical evolution and life cycle (cloud profiling), 2) cloud processing of aerosol particles and trace gases (inflow and outflow), 3) satellite and radar validation (cloud products), 4) vertical transport and mixing (tracer experiment), and 5) cloud formation over forested/deforested areas. Data were collected in near-pristine atmospheric conditions and in environments polluted by biomass burning and urban emissions. The paper presents a general introduction of the ACRIDICON– CHUVA campaign (motivation and addressed research topics) and of HALO with its extensive instrument package, as well as a presentation of a few selected measurement results acquired during the flights for some selected scientific topics.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-01
    Print ISSN: 0941-2948
    Electronic ISSN: 1610-1227
    Topics: Geography , Physics
    Published by Schweizerbart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-02-02
    Description: A novel approach for the nowcasting of clouds and direct normal irradiance (DNI) based on the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellite is presented for a forecast horizon up to 120 min. The basis of the algorithm is an optical flow method to derive cloud motion vectors for all cloudy pixels. To facilitate forecasts over a relevant time period, a classification of clouds into objects and a weighted triangular interpolation of clear-sky regions are used. Low and high level clouds are forecasted separately because they show different velocities and motion directions. Additionally a distinction in advective and convective clouds together with an intensity correction for quickly thinning convective clouds is integrated. The DNI is calculated from the forecasted optical thickness of the low and high level clouds. In order to quantitatively assess the performance of the algorithm, a forecast validation against MSG/SEVIRI observations is performed for a period of 2 months. Error rates and Hanssen–Kuiper skill scores are derived for forecasted cloud masks. For a forecast of 5 min for most cloud situations more than 95 % of all pixels are predicted correctly cloudy or clear. This number decreases to 80–95 % for a forecast of 2 h depending on cloud type and vertical cloud level. Hanssen–Kuiper skill scores for cloud mask go down to 0.6–0.7 for a 2 h forecast. Compared to persistence an improvement of forecast horizon by a factor of 2 is reached for all forecasts up to 2 h. A comparison of forecasted optical thickness distributions and DNI against observations yields correlation coefficients larger than 0.9 for 15 min forecasts and around 0.65 for 2 h forecasts.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-25
    Description: During the ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement)) aircraft campaign in September 2014 over the Amazon, among other topics, aerosol effects on the development of cloud microphysical profiles during the burning season were studied. Hyperspectral remote sensing with the imaging spectrometer specMACS provided cloud microphysical information for sun-illuminated cloud sides. In order to derive profiles of phase or effective radius from cloud side observations, vertical location information is indispensable. For this purpose, spectral measurements of cloud-side-reflected radiation in the oxygen A absorption band collected by specMACS were used to determine absorption path length between cloud sides and the instrument aboard the aircraft. From these data, horizontal distance and eventually vertical height were derived. It is shown that, depending on aircraft altitude and sensor viewing direction, an unambiguous relationship of absorption and distance exists and can be used to retrieve cloud geometrical parameters. A comparison to distance and height information from stereo image analysis (using data of an independent camera) demonstrates the efficiency of the approach. Uncertainty estimates due to method, instrument and environmental factors are provided. The main sources of uncertainty are unknown in cloud absorption path contributions due to complex 3-D geometry or unknown microphysical properties, variable surface albedo and aerosol distribution. A systematic difference of 3.8 km between the stereo and spectral method is found which can be attributed to 3-D geometry effects not considered in the method's simplified cloud model. If this offset is considered, typical differences found are 1.6 km for distance and 230 m for vertical position at a typical distance around 20 km between sensor and convective cloud elements of typically 1–10 km horizontal and vertical extent.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-02-22
    Description: This work describes a method to retrieve the location and geometry of clouds using RGB images from a video camera on an aircraft and data from the aircraft's navigation system. Opposed to ordinary stereo methods for which two cameras with fixed relative position at a certain distance are used to match images taken at the exact same moment, this method uses only a single camera and the aircraft's movement to provide the needed parallax. Advantages of this approach include a relatively simple installation on a (research) aircraft and the possibility to use different image offsets that are even larger than the size of the aircraft. Detrimental effects are the evolution of observed clouds during the time offset between two images as well as the background wind. However we will show that some wind information can also be recovered and subsequently used for the physics-based filtering of outliers. Our method allows the derivation of cloud top geometry which can be used, e.g., to provide location and distance information for other passive cloud remote sensing products. In addition it can also improve retrieval methods by providing cloud geometry information useful for the correction of 3-D illumination effects. We show that this method works as intended through comparison to data from a simultaneously operated lidar system. The stereo method provides lower heights than the lidar method; the median difference is 126 m. This behavior is expected as the lidar method has a lower detection limit (leading to greater cloud top heights for the downward view), while the stereo method also retrieves data points on cloud sides and lower cloud layers (leading to lower cloud heights). Systematic errors across the measurement swath are less than 50 m.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...