ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-30
    Description: Quantification of ice-rafted debris (IRD) abundances in deep-sea records using three independent methodologies of obtaining IRD abundances and how different approaches will affect determinations of mass accumulation rates (MARs). The three methodologies for this cross comparison of methods include: counting clasts 〉2 mm in x-radiograph images; the sieved weight percentage of the medium-to-coarse sand fraction (250 μm-2 mm); and volumetric estimates of the 〉125 μm sand fraction using Laser diffraction Particle Size Analysis (LPSA) methods to determine particle size. The data are collected from the Wilkes Land and Ross Sea region of Antarctica, using cores RS15-LC42,RS15-LC48, IODP sites 1361 and ODP site 1165.
    Keywords: Antarctica; Grain Size; Ice Rafted Debris; method
    Type: Dataset
    Format: application/zip, 15 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-10
    Description: Constraining the timing of the retreat of the Last Glacial Maximum (LGM) Antarctic Ice Sheet in the Ross Sea provides insights into the processes controlling marine-based ice sheet retreat. The over-deepened Ross Sea continental shelf is an ideal configuration for marine ice-sheet instability, and this region was thought to be one of the largest Antarctic contributors to post-LGM sea level rise. However, the chronology and pattern of retreat of the LGM ice sheet in the Ross Sea is largely constrained by coastal records along the Transantarctic Mountain front in the Western Ross Sea. Although these offer more reliable dating techniques than marine sediment cores, they may be influenced by local glaciers derived from East Antarctic outlet glaciers. Consequently, these coastal records may be ambiguous in the broader context of retreat in the central regions of the Ross Sea. However, previous studies have inferred that records in this region retreated in a north to south pattern, and was fed by ice sourced from the central Ross Sea – with the implication that broader ice sheet retreat in the central Ross Sea occurred as late as the mid Holocene. We present two lines of evidence that counter this established interpretation of the pattern of retreat in the Ross Sea: 1) a sedimentary facies succession and foraminifera-based radiocarbon chronology from within the Ross Sea embayment that indicates glacial retreat and open marine conditions to the east of Ross Island was already in place before 8.6 cal ka BP, at least 1 kyr earlier than indicated by terrestrial records in McMurdo Sound; and 2) a new multibeam swath bathymetry data that identifies well-preserved glacial features indicating thick (〉700m) marine-based ice derived from the East Antarctic Ice Sheet (EAIS) coastal outlet glaciers dominated the ice sheet input into the southwestern Ross Sea during the last phases of glaciation – and thus may have acted independent of any ice in the central Ross Sea embayment. Comparing these data to new modelling experiments, we hypothesize that marine-based ice sheet retreat was triggered by oceanic forcings along most of the Pacific Ocean coastline of Antarctica, but continued early Holocene retreat into the inner shelf region of the Ross Sea occurred primarily as a consequence of marine ice sheet instability. Keywords: Ross Sea, deglaciation, Last Glacial Maximum, Holocene
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-15
    Description: During the Late Pleistocene–Holocene, the Ross Sea Ice Shelf exhibited strong spatial variability in relation to the atmospheric and oceanographic climatic variations. Despite being thoroughly investigated, the timing of the ice sheet retreat from the outer continental shelf since the Last Glacial Maximum (LGM) still remains controversial, mainly due to a lack of sediment cores with a robust chronostratigraphy. For this reason, the recent recovery of sediments containing a continuous occurrence of calcareous foraminifera provides the important opportunity to create a reliable age model and document the early deglacial phase in particular. Here we present a multiproxy study from a sediment core collected at the Hallett Ridge (1800m of depth), where significant occurrences of calcareous planktonic and benthic foraminifera allow us to document the first evidence of the deglaciation after the LGM at about 20.2 ka. Our results suggest that the co-occurrence of large Neogloboquadrina pachyderma tests and abundant juvenile forms reflects the beginning of open-water conditions and coverage of seasonal sea ice. Our multiproxy approach based on diatoms, silicoflagellates, carbon and oxygen stable isotopes on N. pachyderma, sediment texture, and geochemistry indicates that abrupt warming occurred at approximately 17.8 ka, followed by a period of increasing biological productivity. During the Holocene, the exclusive dominance of agglutinated benthic foraminifera suggests that dissolution was the main controlling factor on calcareous test accumulation and preservation. Diatoms and silicoflagellates show that ocean conditions were variable during the middle Holocene and the beginning of the Neoglacial period at around 4 ka. In the Neoglacial, an increase in sand content testifies to a strengthening of bottom-water currents, supported by an increase in the abundance of the tycopelagic fossil diatom Paralia sulcata transported from the coastal regions, while an increase in ice-rafted debris suggests more glacial transport by icebergs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-10
    Description: Constraining the timing of the retreat of the Last Glacial Maximum (LGM) Antarctic Ice Sheet in the Ross Sea provides insights into the processes controlling marine-based ice sheet retreat. The over-deepened Ross Sea continental shelf is an ideal configuration for marine ice-sheet instability, and this region was thought to be one of the largest Antarctic contributors to post-LGM sea level rise. However, the chronology and pattern of retreat of the LGM ice sheet in the Ross Sea is largely constrained by coastal records along the Transantarctic Mountain front in the Western Ross Sea. Although these offer more reliable dating techniques than marine sediment cores, they may be influenced by local glaciers derived from East Antarctic outlet glaciers. Consequently, these coastal records may be ambiguous in the broader context of retreat in the central regions of the Ross Sea. However, previous studies have inferred that records in this region retreated in a north to south pattern, and was fed by ice sourced from the central Ross Sea – with the implication that broader ice sheet retreat in the central Ross Sea occurred as late as the mid Holocene. We present two lines of evidence that counter this established interpretation of the pattern of retreat in the Ross Sea: 1) a sedimentary facies succession and foraminifera-based radiocarbon chronology from within the Ross Sea embayment that indicates glacial retreat and open marine conditions to the east of Ross Island was already in place before 8.6 cal ka BP, at least 1 kyr earlier than indicated by terrestrial records in McMurdo Sound; and 2) a new multibeam swath bathymetry data that identifies well-preserved glacial features indicating thick (〉700m) marine-based ice derived from the East Antarctic Ice Sheet (EAIS) coastal outlet glaciers dominated the ice sheet input into the southwestern Ross Sea during the last phases of glaciation – and thus may have acted independent of any ice in the central Ross Sea embayment. Comparing these data to new modelling experiments, we hypothesize that marine-based ice sheet retreat was triggered by oceanic forcings along most of the Pacific Ocean coastline of Antarctica, but continued early Holocene retreat into the inner shelf region of the Ross Sea occurred primarily as a consequence of marine ice sheet instability. Keywords: Ross Sea, deglaciation, Last Glacial Maximum, Holocene
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-14
    Description: The West Antarctic Ice Sheet (WAIS) presently holds enough ice to raise global sea level by 4.3 m if completely melted. The unknown response of the WAIS to future warming remains a significant challenge for numerical models in quantifying predictions of future sea level rise. Sea level rise is one of the clearest planet-wide signals of human-induced climate change. The Sensitivity of the West Antarctic Ice Sheet to a Warming of 2 ∘C (SWAIS 2C) Project aims to understand past and current drivers and thresholds of WAIS dynamics to improve projections of the rate and size of ice sheet changes under a range of elevated greenhouse gas levels in the atmosphere as well as the associated average global temperature scenarios to and beyond the +2 ∘C target of the Paris Climate Agreement. Despite efforts through previous land and ship-based drilling on and along the Antarctic margin, unequivocal evidence of major WAIS retreat or collapse and its causes has remained elusive. To evaluate and plan for the interdisciplinary scientific opportunities and engineering challenges that an International Continental Drilling Program (ICDP) project along the Siple coast near the grounding zone of the WAIS could offer (Fig. 1), researchers, engineers, and logistics providers representing 10 countries held a virtual workshop in October 2020. This international partnership comprised of geologists, glaciologists, oceanographers, geophysicists, microbiologists, climate and ice sheet modelers, and engineers outlined specific research objectives and logistical challenges associated with the recovery of Neogene and Quaternary geological records from the West Antarctic interior adjacent to the Kamb Ice Stream and at Crary Ice Rise. New geophysical surveys at these locations have identified drilling targets in which new drilling technologies will allow for the recovery of up to 200 m of sediments beneath the ice sheet. Sub-ice-shelf records have so far proven difficult to obtain but are critical to better constrain marine ice sheet sensitivity to past and future increases in global mean surface temperature up to 2 ∘C above pre-industrial levels. Thus, the scientific and technological advances developed through this program will enable us to test whether WAIS collapsed during past intervals of warmth and determine its sensitivity to a +2 ∘C global warming threshold (UNFCCC, 2015).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 5847-5889, doi:10.5194/bg-15-5847-2018.
    Description: Since the start of the industrial revolution, human activities have caused a rapid increase in atmospheric carbon dioxide (CO2) concentrations, which have, in turn, had an impact on climate leading to global warming and ocean acidification. Various approaches have been proposed to reduce atmospheric CO2. The Martin (or iron) hypothesis suggests that ocean iron fertilization (OIF) could be an effective method for stimulating oceanic carbon sequestration through the biological pump in iron-limited, high-nutrient, low-chlorophyll (HNLC) regions. To test the Martin hypothesis, 13 artificial OIF (aOIF) experiments have been performed since 1990 in HNLC regions. These aOIF field experiments have demonstrated that primary production (PP) can be significantly enhanced by the artificial addition of iron. However, except in the Southern Ocean (SO) European Iron Fertilization Experiment (EIFEX), no significant change in the effectiveness of aOIF (i.e., the amount of iron-induced carbon export flux below the winter mixed layer depth, MLD) has been detected. These results, including possible side effects, have been debated amongst those who support and oppose aOIF experimentation, and many questions concerning the effectiveness of scientific aOIF, environmental side effects, and international aOIF law frameworks remain. In the context of increasing global and political concerns associated with climate change, it is valuable to examine the validity and usefulness of the aOIF experiments. Furthermore, it is logical to carry out such experiments because they allow one to study how plankton-based ecosystems work by providing insight into mechanisms operating in real time and under in situ conditions. To maximize the effectiveness of aOIF experiments under international aOIF regulations in the future, we therefore suggest a design that incorporates several components. (1) Experiments conducted in the center of an eddy structure when grazing pressure is low and silicate levels are high (e.g., in the SO south of the polar front during early summer). (2) Shipboard observations extending over a minimum of  ∼ 40 days, with multiple iron injections (at least two or three iron infusions of  ∼ 2000kg with an interval of  ∼ 10–15 days to fertilize a patch of 300km2 and obtain a  ∼ 2nM concentration). (3) Tracing of the iron-fertilized patch using both physical (e.g., a drifting buoy) and biogeochemical (e.g., sulfur hexafluoride, photosynthetic quantum efficiency, and partial pressure of CO2) tracers. (4) Employment of neutrally buoyant sediment traps (NBST) and application of the water-column-derived thorium-234 (234Th) method at two depths (i.e., just below the in situ MLD and at the winter MLD), with autonomous profilers equipped with an underwater video profiler (UVP) and a transmissometer. (5) Monitoring of side effects on marine/ocean ecosystems, including production of climate-relevant gases (e.g., nitrous oxide, N2O; dimethyl sulfide, DMS; and halogenated volatile organic compounds, HVOCs), decline in oxygen inventory, and development of toxic algae blooms, with optical-sensor-equipped autonomous moored profilers and/or autonomous benthic vehicles. Lastly, we introduce the scientific aOIF experimental design guidelines for a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES).
    Description: This research was a part of the project titled the Korean Iron Fertilization Experiment in the Southern Ocean (KOPRI, PM 16060) funded by the Ministry of Oceans and Fisheries, Korea. This work was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (no. 2015R1C1A1A01052051); the Korea-Arctic Ocean Observing System project (K-AOOS) (KOPRI, 20160245) funded by the MOF, Korea; and the KOPRI project (PE18200). Alison M. Macdonald was supported by NOAA grant no. NA11OAR4310063 and internal WHOI funding.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 44 (2017): 1474–1482, doi:10.1002/2016GL072124.
    Description: As the western North Pacific Ocean is located downwind of the source regions for spring Asian dust, it is an ideal location for determining the response of open waters to these events. Spatial analysis of spring Asian dust events from source regions to the western North Pacific, using long-term daily aerosol index data, revealed three different transport pathways supported by the westerly wind system: one passing across the northern East/Japan Sea (40°N–50°N), a second moving over the entire East/Japan Sea (35°N–55°N), and a third flowing predominantly over the Siberian continent (〉50°N). Our results indicate that strong spring Asian dust events can increase ocean primary productivity by more than 70% (〉2-fold increase in chlorophyll-a concentrations) compared to weak/nondust conditions. Therefore, attention should be paid to the recent downturn in the number of spring Asian dust events and to the response of primary production in the western North Pacific to this change.
    Description: Korean government (MSIP) Grant Numbers: 2015R1C1A1A01052051, NRF-C1ABA001-2011-0021064; Korea Polar Research Institute (KOPRI) Grant Number: PE17030; NOAA Grant Number: NA11OAR4310063; WHOI
    Description: 2017-08-15
    Keywords: Western North Pacific Ocean ; Asian dust events ; Ocean primary productivity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-11-17
    Description: Multiproxy analyses including hydrographical, geochemical, foraminferal, lithological and geophysical data reveal variable influences of the glaciers Tunabreen and von Postbreen as well as the river Sassenelva on the sedimentary environment in two Spitsbergen fjords during the Late Weichselian and the Holocene. Grounded ice covered the study area during the last glacial. The glacier fronts retreated stepwise during the latest Weichselian/earliest Holocene, and the glaciers were probably small during the early Holocene. A growth of Tunabreen occurred between 6 and 4 cal ka BP. Reduced input from Tunabreen from c. 3.7 cal ka BP was probably a result of suppressed iceberg rafting related to the enhanced formation of sea ice and/or reduced meltwater runoff. During the past two millennia, the glacier fronts advanced and retreated several times. The maximum Holocene glacier extent was reached at the end of a surge of von Postbreen in AD 1870. Characteristics of the modern glaciomarine environment include: (1) different colours and bulk-mineral assemblages of the turbid waters emanating from the main sediment sources; (2) variable locations of the turbid-water plumes as a consequence of wind forcing and the Coriolis effect; (3) stratified water masses during summers with interannual variations; (4) increasing productivity with increasing distance from the glacier fronts; (5) foraminifera-faunal assemblages typical for glacierproximal settings; and (6) periodical mass-transport activity.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...