ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-04-28
    Description: The vulnerability assessment model, composed by 11 vulnerability factors, is established with the introduction of the concept of “vulnerability” into the assessment of tunnel support system. Analytic hierarchy process is utilized to divide these 11 factors into human attributes and natural attributes, and define the weight of these factors for the model. The “vulnerability” applied io the assessment of the tunnel support system model is reached. The vulnerability assessment model was used for evaluating and modifying the haulage tunnel #3207 of Bo-fang mine panel #2. The results decreased the vulnerability of the tunnel support system and demonstrated acceptable effects. Furthermore, the results show that the impact of human attributes on tunnel support systems is dramatic under the condition that natural attributes are permanent, and the “vulnerability” is exactly a notable factor to manifest the transformation during this process. The results also indicate that optimizing human attributes can attenuate vulnerability in tunnel support systems. As a result, enhancement of stability of tunnel support systems can be achieved.
    Print ISSN: 1024-123X
    Electronic ISSN: 1563-5147
    Topics: Mathematics , Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-06
    Description: Other
    Description: Earthquakes associated with fluid injection in various geo-energy settings, such as shale gas and deep geothermal energy, have shelved many projects with great potential. However, the injection-rate dependence of earthquake nucleation length, i.e., the slowly slipping (creeping) fault length in preparation for a subsequent earthquake (Kaneko & Lapusta, 2008), remains elusive. In this study, we take a step towards this issue by performing fluid injection experiments on low-permeability granite samples containing a critically stressed sawcut fault at different local injection rates (0.2 mL/min and 0.8 mL/min) and confining pressures (31 MPa and 61 MPa) (c. f., Ji & Wu, 2017; Wang et al., 2020). An array of local strain gauges and acoustic emission (AE) hypocenter locations were used to monitor the precursory slip of critically stressed faults before injection-induced stick-slip failure (c. f., Passelègue et al., 2020; Wang et al., 2020). The nucleation length was determined for each injection-induced stick-slip event, and its dependence on effective normal stress and injection rate was explored. Herein, we compile the processed data obtained from the experiments in four Excel worksheets. The full description of the methods is provided in Ji et al. (2022).
    Keywords: Injection-induced seismicity ; Injection rate ; Earthquake nucleation length ; Fluid injection ; Hydraulic stimulation ; Fault slip ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS ; geological process 〉 seismic activity 〉 earthquake
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...