ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Fungi. ; Mycology. ; Microbiology. ; Agriculture. ; Plants Evolution. ; Plant biotechnology. ; Plants Development. ; Fungi. ; Agriculture. ; Plant Evolution. ; Plant Biotechnology. ; Plant Development.
    Description / Table of Contents: Preface -- Introduction to Agriculturally Important Fungi for Crop Protection -- Role of Fungi in Adaptation of Agriculture Crops to Abiotic Stresses -- Arbuscualr Mycorrhizae Associations and Role in Mitigation of Drought Stress in Plants -- Fungal Mediated Alleviation of Cold Stress for Growth and Yield of Cereal Crops -- Soil Salinity and their Alleviation Using Plant Growth Promoting Fungi -- Phytohormones Producing Fungal Communities -- Fungal Secondary Metabolites and Bioactive Compounds for Plant Defence -- Fungal Endophytes -- Aspergillus Mycotoxins -- Trichoderma -- Piriformospora indica -- Bioresources for Control of Plant Parasitic Nematodes -- Global Scenario of Advance Fungal Research in Biocontrol and Crop Protection -- Index -- .
    Abstract: Microbes are ubiquitous in nature. Among microbes, fungal communities play an important role in agriculture, the environment, and medicine. Vast fungal diversity has been found in plant systems. The fungi associated with any plant system are in the form of epiphytic, endophytic, and rhizospheric fungi. These associated fungi play important roles in plant growth, crop yield, and soil health. The rhizospheric fungi present in rhizospheric zones have a sufficient amount of nutrients released by plant root systems in the form of root exudates for growth, development, and activities of microbes. Endophytic fungi enter in host plants mainly through wounds that naturally occur as a result of plant growth, or develop through root hairs and at epidermal conjunctions. The phyllospheric fungi may survive or proliferate on leaves, depending on the extent of influences of material in leaf diffuseness or exudates. The diverse group of fungal communities is a key component of soil-plant systems, where they are engaged in an intense network of interactions in the rhizospheric, endophytic, and phyllospheric areas, and they have emerged as an important and promising tool for sustainable agriculture. These fungal communities help to promote plant growth directly or indirectly by mechanisms for plant growth-promoting (PGP) attributes. These PGP fungi can be used as biofertilizers, bioinoculants, and biocontrol agents in place of chemical fertilizers and pesticides in an environmentally and eco-friendly manner. This book covers the current knowledge of plant-associated fungi and their potential biotechnological applications in agriculture and allied sectors. This book should be useful to scientists, researchers, and students of microbiology, biotechnology, agriculture, molecular biology, environmental biology, and related subjects.
    Type of Medium: Online Resource
    Pages: XVIII, 370 p. 40 illus., 20 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030484743
    Series Statement: Fungal Biology,
    DDC: 579.5
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Agriculture. ; Industrial microbiology. ; Microbial ecology. ; Plant biotechnology. ; Botanical chemistry. ; Agriculture. ; Industrial Microbiology. ; Microbial Ecology. ; Plant Biotechnology. ; Plant Biochemistry.
    Description / Table of Contents: Chapter 1 - Diversity, Plant Growth Promotion Attributes and Agricultural Applications of Rhizospheric Microbes (Gangavarapu Subrahmanyam, Amit Kumar, Sosanka Protim Sandilya, Mahananda Chutia, Ajar Nath Yadav) -- Chapter 2 - Culturable Endophytic Fungal Communities Associated with Cereal Crops and their Role in Plant Growth Promotion(Hira Saleem, Hareem Mohsin, Rabia Tanvir, Yasir Rehman) -- Chapter 3 - Current Perspectives on Phosphate Solubilizing Endophytic Fungi: Ecological Significances and Biotechnological Applications (Edla Sujatha, Kuraganti Gunaswetha, Pallaval Veera Bramhachari) -- Chapter 4 - Endophytic Microbes from Medicinal Plants and Their Secondary Metabolites for Agricultural Significances (Chanda V. Parulekar Berde, Prachiti. P. Rawool, Pallaval Veera Bramhachari, Vikrant B. Berde) -- Chapter 5 - Phyllospheric Microbiomes: Diversity, Ecological Significance, and Biotechnological Applications (Natesan Sivakumar, Ramamoorthy Sathish Kumar, Gopal Selvakumar, Rajaram Shyamkumar and Kalimuthu Arjune Kumar) -- Chapter 6 - Biofilms Forming Microbes: Diversity and Potential Application in Plant-Microbe Interaction and Plant Growth (Ajay Kumar and Joginder Singh) -- Chapter 7 - Actinobacteria: Diversity, Plant Interactions and Biotechnology Applications (Monnanda Somaiah Nalini, and Harischandra Sripathy Prakash) -- Chapter 8 - Phylogenetic Diversity of Epiphytic Pink-Pigmented Methylotrophic Bacteria and Role in Alleviation of Abiotic Stress in Plants (Ganapathy Ashok, Guruvu Nambirajan, Krishnan Baskaran, chandran Viswanathan and Xavier Alexander) -- Chapter 9 - Potassium Solubilizing Microbes: Diversity, Ecological Significances and Biotechnological Applications (Dheeraj Pandey, Ifra Zoomi, Harbans Kaur Kehri, Uma Singh, Kanhaiya L. Chaudhri and Ovaid Akhtar) -- Chapter 10 - Alleviation of Stress–Induced Ethylene–Mediated Negative Impact on Crop Plants by Bacterial ACC Deaminase: Perspectives and Applications in Stressed Agriculture Management (Hassan Etesami, Fatemeh Noori, Ali Ebadi, Narges Reiahi Samani) -- Chapter 11 - Halophilic Microbes from Plant Growing Under the Hypersaline Habitats and Their Application for Plant Growth and Mitigation of Salt Stress (Jai Prakash, Enespa , Prem Chandra) -- Chapter 12 - Microbes Mediated Drought Tolerance in Plants: Current Developments and Future Challenges (Iti Gontia-Mishra, Swapnil Sapre, Reena Deshmukh, Sumana Sikdar and Sharad Tiwari) -- Chapter 13 - Microbial Consortium as Biofertilizers for Crops Growing Under the Extreme Habitats (Chuks Kenneth Odoh, Kabari Sam, Nenibarini Zabbey, Chibuzor Nwadibe Eze, Amechi S. Nwankwegu, Charity Laku and Boniface Barinem Dumpe) -- Chapter 14 - Global Scenario of Plant Microbiome for Sustainable Agriculture: Current Advancements and Future Challenges (Simranjeet Singh, Vijay Kumar, Satyender Singh, Daljeet Singh Dhanjal, Shivika Datta and Joginder Singh) -- Chapter 15 - Current Aspects and Application of Biofertilizers for Sustainable Agriculture (Modhurima Misra, Ashish Sachan, Shashwati Ghosh Sachan) -- Chapter 16 - Plant Microbiomes for Sustainable Agriculture: Conclusion and Future Vision (Ajar Nath Yadav).
    Abstract: This book encompasses the current knowledge of plant microbiomes and their potential biotechnological application for plant growth, crop yield and soil health for sustainable agriculture. The plant microbiomes (rhizospheric, endophytic and epiphytic) play an important role in plant growth, development, and soil health. Plant and rhizospheric soil are a valuable natural resource harbouring hotspots of microbes, and it plays critical roles in the maintenance of global nutrient balance and ecosystem function. The diverse group of microbes is key components of soil–plant systems, where they are engaged in an intense network of interactions in the rhizosphere/endophytic/phyllospheric. The rhizospheric microbial diversity present in rhizospheric zones has a sufficient amount of nutrients release by plant root systems in form of root exudates for growth, development and activities of microbes. The endophytic microbes are referred to those microorganisms, which colonize in the interior of the plant parts, viz root, stem or seeds without causing any harmful effect on host plant. Endophytic microbes enter in host plants mainly through wounds, naturally occurring as a result of plant growth, or through root hairs and at epidermal conjunctions. Endophytes may be transmitted either vertically (directly from parent to offspring) or horizontally (among individuals). The phyllosphere is a common niche for synergism between microbes and plant. The leaf surface has been termed as phyllosphere and zone of leaves inhabited by microorganisms as phyllosphere. The plant part, especially leaves, is exposed to dust and air currents resulting in the establishments of typical flora on their surface aided by the cuticles, waxes and appendages, which help in the anchorage of microorganisms. The phyllospheric microbes may survive or proliferate on leaves depending on extent of influences of material in leaf diffuseness or exudates. The leaf diffuseness contains the principal nutrients factors (amino acids, glucose, fructose and sucrose), and such specialized habitats may provide niche for nitrogen fixation and secretions of substances capable of promoting the growth of plants.
    Type of Medium: Online Resource
    Pages: XXIII, 482 p. 57 illus., 46 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030384531
    Series Statement: Sustainable Development and Biodiversity, 25
    DDC: 630
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Fungi. ; Mycology. ; Microbiology. ; Plant biotechnology. ; Plant anatomy. ; Plant ecology. ; Plant genetics. ; Fungi. ; Plant Biotechnology. ; Plant Anatomy and Morphology. ; Plant Ecology. ; Plant Genetics.
    Description / Table of Contents: 1. Biodiversity and Ecological Perspective of Industrially Important Fungi: An Introduction -- 2. Arbuscular Mycorrhizal Fungi: Biodiversity, Interaction with Plants and Potential Applications -- 3. Aspergillus from Different Habitats and Their Industrial Applications -- 4. Truffles: Biodiversity, Ecological Significances and Biotechnological applications -- 5. Biodiversity and Industrial Applications of Genus Chaetomium -- 6. Diversity of Cordyceps from Different Environmental Agroecosystems and Potential Applications -- 7. Exploring Fungal Biodiversity of Genus Epicoccum and their Biotechnological Potential -- 8. Molecular Taxonomy, Diversity and Potential Applications of Genus Fusarium -- 9. Ganoderma: Diversity, Ecological Significances and Potential Applications in Industry and Allied Sectors -- 10. Diversity, Phylogenetic Profiling of Genus Penicillium and Their Potential Applications -- 11. Piriformospora indica: Biodiversity, Ecological Significances and Biotechnological Applications for Agriculture and Allied Sectors -- 12. Saccharomyces and their Potential Applications in Food and Food Processing Industries -- 13. Biodiversity of Genus Trichoderma and their Potential Applications -- 14.Role of Fungi in Bioremediation of Soil Contaminated with Persistent Organic Compounds -- 15. Fungal Biopesticides for Agro-Environmental Sustainability -- 16. Role of Fungi in Bioremediation of Soil Contaminated with Heavy Metals -- 17. Biodiversity and Biotechnological Applications of Industrially Important Fungi: Current Research and Future Prospects.
    Abstract: Fungi are an understudied, biotechnologically valuable group of organisms. Due to their immense range of habitats, and the consequent need to compete against a diverse array of other fungi, bacteria, and animals, fungi have developed numerous survival mechanisms. However, besides their major basic positive role in the cycling of minerals, organic matter and mobilizing insoluble nutrients, fungi have other beneficial impacts: they are considered good sources of food and active agents for a number of industrial processes involving fermentation mechanisms as in the bread, wine and beer industry. A number of fungi also produce biologically important metabolites such as enzymes, vitamins, antibiotics and several products of important pharmaceutical use; still others are involved in the production of single cell proteins. The economic value of these marked positive activities has been estimated as approximating to trillions of US dollars. The unique attributes of fungi thus herald great promise for their application in biotechnology and industry. Since ancient Egyptians mentioned in their medical prescriptions how they can use green molds in curing wounds as the obvious historical uses of penicillin, fungi can be grown with relative ease, making production at scale viable. The search for fungal biodiversity, and the construction of a living fungi collection, both have incredible economic potential in locating organisms with novel industrial uses that will lead to novel products. Fungi have provided the world with penicillin, lovastatin, and other globally significant medicines, and they remain an untapped resource with enormous industrial potential. Volume 1 of Industrially Important Fungi for Sustainable Development provides an overview to understanding fungal diversity from diverse habitats and their industrial application for future sustainability. It encompasses current advanced knowledge of fungal communities and their potential biotechnological applications in industry and allied sectors. The book will be useful to scientists, researchers, and students of microbiology, biotechnology, agriculture, molecular biology, and environmental biology.
    Type of Medium: Online Resource
    Pages: XXVI, 589 p. 47 illus., 35 illus. in color. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9783030675615
    Series Statement: Fungal Biology,
    DDC: 579.5
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Fungi. ; Mycology. ; Microbiology. ; Plant biotechnology. ; Plant anatomy. ; Plant ecology. ; Fungi. ; Plant Biotechnology. ; Plant Anatomy and Morphology. ; Plant Ecology.
    Description / Table of Contents: Preface -- Bioprospecting for Biomolecules from Different Fungal Communities: An Introduction -- Fungi as a Gold Mine of Antioxidants -- Endophytic Fungi as a Source of New Pharmaceutical Biomolecules -- Fungal Communities from Different Habitats for Tannins in Industry -- Recent Advances in Fungal Antimicrobial Molecules -- Fungal Laccases to Where and Where? -- Fungal Cellulases: Current Research and Future Challenges -- Fungal Secondary Metabolites: Current Research, Commercial Aspects and Applications -- Bioprospecting of Thermophilic Fungal Enzymes and Potential Applications -- Bioactive Secondary Metabolites from Psychrophilic Fungi and their Industrial Importance -- Fungal Amylases and their Industrial Applications -- Fungal Phytases: Current Research, and Applications in Food Industry -- Fungal Lipases: Insights into Molecular Structures and Biotechnological Applications in Medicine and Dairy Industry -- Fungal Xylanases for Different Industrial Applications.-Fungal Pigments for Food Industry -- Fungal Production of Vitamins and their Food Industrial Applications -- Nutraceutical Potential of Wild Edible Mushroom Hygrocybe alwisii -- Fungal Biopharmaceuticals: Current Research, Production and Potential Applications -- Natural Pigments from Filamentous Fungi: Production and Applications -- Bioprospecting of Industrially Important Mushrooms -- Bioactive Attributes of Xylaria Species from the Scrub Jungles of Southwest India -- Fungicide as Potential Vaccine: Current Research and Future Challenges -- Bioprospecting for Biomolecules from Industrially Important Fungi: Current Research and Future Prospects -- Index.
    Abstract: Fungi are an essential, fascinating and biotechnologically useful group of organisms with an incredible biotechnological potential for industrial exploitation. Knowledge of the world’s fungal diversity and its use is still incomplete and fragmented. There are many opportunities to accelerate the process of filling knowledge gaps in these areas. The worldwide interest of the current era is to increase the tendency to use natural substances instead of synthetic ones. The increasing urge in society for natural ingredients has compelled biotechnologists to explore novel bioresources which can be exploited in industrial sector. Fungi, due to their unique attributes and broad range of their biological activities hold great promises for their application in biotechnology and industry. Fungi are an efficient source of antioxidants, enzymes, pigments, and many other secondary metabolites. The large scale production of fungal pigments and their utility provides natural coloration without creating harmful effects on entering the environment, a safer alternative use to synthetic colorants. The fungal enzymes can be exploited in wide range of industries such as food, detergent, paper, and also for removal toxic waste. This book will serve as valuable source of information as well as will provide new directions to researchers to conduct novel research in field of mycology. Volume 2 of “Industrially Important Fungi for Sustainable Development” provides an overview to understanding bioprospecting of fungal biomolecules and their industrial application for future sustainability. It encompasses current advanced knowledge of fungal communities and their potential biotechnological applications in industry and allied sectors. The book will be useful to scientists, researchers, and students of microbiology, biotechnology, agriculture, molecular biology, and environmental biology.
    Type of Medium: Online Resource
    Pages: XXIV, 813 p. 1 illus. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9783030856038
    Series Statement: Fungal Biology,
    DDC: 579.5
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Agriculture. ; Botanical chemistry. ; Plant physiology. ; Microbiology. ; Plant biotechnology. ; Agriculture. ; Plant Biochemistry. ; Plant Physiology. ; Microbiology. ; Plant Biotechnology.
    Description / Table of Contents: 1 Soil Microbiomes for Healthy Nutrient Recycling -- 2 Soil Microbial Diversity: Calling Citizens for Sustainable Agricultural Development -- 3 Metagenomics in deciphering microbial communities associated with medicinal plants -- 4 Role of Metagenomics in Deciphering the Microbial Communities Associated with Rhizosphere of Economically Important Plants -- 5 Plant-Microbe Association for Mutual Benefits for Plant Growth and Soil Health -- 6 Deciphering and Harnessing Plant microbiomes: Detangling the Patterns and Process - A Clean, Green Road to Sustainable Agriculture -- 7 Rhizosphere Biology: A Key to Agricultural Sustainability -- 8 Rhizosphere Microbiomes and their Potential Role in Increasing Soil Fertility and Crop Productivity -- 9 Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Crop Improvement -- 10 Beneficial Microbiomes for Sustainable Agriculture: An Ecofriendly Approach -- 11 Endophytic Microbiomes and their Plant Growth Promoting Attributes for Plant Health -- 12 Mycorrhiza: A Sustainable Option for Better Crop Production -- 13 Phyllospheric Microbes: Diversity, Functions, Interaction, and Applications in Agriculture -- 14 Mitigation Strategies for Abiotic Stress Tolerance in Plants through Stress Tolerant Plant Growth Promoting Microbes -- 15 Plant and Microbes Mediated Secondary Metabolites: Remunerative venture for Discovery and Development -- 16 Potential Strategies for Control of Agricultural Occupational Health Hazards -- 17 Insecticides Derived from Natural Products: Diversity and Potential Applications -- 18 Bacillus thuringiensis as Potential Biocontrol Agent for Sustainable Agriculture -- 19 Entomopathogenic Microbes for Sustainable Crop Protection: Future Perspectives -- 20 Soil Microbes as Biopesticides: Agricultural Applications and Future Prospects -- 21 Biofertilizers for Agricultural Sustainability: Current Status and Future Challenges -- 22 Current Trends in Microbial Biotechnology for Agricultural Sustainability: Conclusion and Future Challenges. .
    Abstract: Microbial biotechnology is an emerging field with applications in a broad range of sectors involving food security, human nutrition, plant protection and overall basic research in the agricultural sciences. The environment has been sustaining the burden of mankind from time immemorial, and our indiscriminate use of its resources has led to the degradation of the climate, loss of soil fertility, and the need for sustainable strategies. The major focus in the coming decades will be on achieving a green and clean environment by utilizing soil and plant-associated beneficial microbial communities. Plant-microbe interactions include the association of microbes with plant systems: epiphytic, endophytic and rhizospheric. The microbes associated with plant ecosystems play an important role in plant growth, development, and soil health. Moreover, soil and plant microbiomes help to promote plant growth, either directly or indirectly by means of plant growth-promoting mechanisms, e.g. the release of plant growth regulators; solubilization of phosphorus, potassium and zinc; biological nitrogen fixation; or by producing siderophores, ammonia, HCN and other secondary metabolites. These beneficial microbial communities represent a novel and promising solution for agro-environmental sustainability by providing biofertilizers, bioprotectants, and biostimulants, in addition to mitigating various types of abiotic stress in plants. This book focuses on plant-microbe interactions; the biodiversity of soil and plant microbiomes; and their role in plant growth and soil health. Accordingly, it will be immensely useful to readers working in the biological sciences, especially microbiologists, biochemists and microbial biotechnologists. .
    Type of Medium: Online Resource
    Pages: XX, 572 p. 72 illus., 44 illus. in color. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9789811569494
    Series Statement: Environmental and Microbial Biotechnology,
    DDC: 630
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Agriculture. ; Plant biotechnology. ; Microbial ecology. ; Microbial genetics. ; Agriculture. ; Plant Biotechnology. ; Microbial Ecology. ; Microbial Genetics.
    Description / Table of Contents: Chapter 1. Plant-Microbes Interaction: Current Developments and Future Challenges -- Chapter 2. Rhizospheric Microbiomes: Biodiversity, Current Advancement, and Potential Biotechnological Application -- Chapter 3. Endophytic Microbiomes: Biodiversity, Current Status, and Potential Agricultural Applications -- Chapter 4. Culturable Plant-Associated Endophytic Microbial Communities from Leguminous and Non-Leguminous Crops -- Chapter 5. Arbuscular Mycorrhizal Fungi: Abundance, Interaction with Plants and Potential Biological Application -- Chapter 6. Endophytic Microbiomes and their Plant Growth Promoting Attributes for Plant Health -- Chapter 7. Diversity and Biotechnological Potential of Culturable Rhizospheric Actinomicrobiota -- Chapter 8. Bacillus and Endomicrobiome: Biodiversity and potential Applications in Agriculture -- Chapter 9. Role of Microbes in Improving Plant Growth and Soil Health for Sustainable Agriculture -- Chapter 10. Biofertilizers and Biopesticides: Microbes for Sustainable Agriculture.
    Abstract: Microbes are ubiquitous in nature, and plant-microbe interactions are a key strategy for colonizing diverse habitats. The plant microbiome (epiphytic, endophytic and rhizospheric) plays an important role in plant growth and development and soil health. Further, rhizospheric soil is a valuable natural resource, hosting hotspots of microbes, and is vital in the maintenance of global nutrient balance and ecosystem function. The term endophytic microbes refers to those microorganisms that colonize the interior the plants. The phyllosphere is a common niche for synergism between microbes and plants and includes the leaf surface. The diverse group of microbes are key components of soil-plant systems, and where they are engaged in an extensive network of interactions in the rhizosphere/endophytic/phyllospheric they have emerged as an important and promising tool for sustainable agriculture. Plant microbiomes help to directly or indirectly promote plant growth using plant growth promoting attributes, and could potentially be used as biofertilizers/bioinoculants in place of chemical fertilizers. This book allows readers to gain an understanding of microbial diversity associated with plant systems and their role in plant growth, and soil health. Offering an overview of the state of the art in plant microbiomes and their potential biotechnological applications in agriculture and allied sectors, it is a valuable resource for scientists, researchers and students in the field of microbiology, biotechnology, agriculture, molecular biology, environmental biology and related subjects.
    Type of Medium: Online Resource
    Pages: XXII, 296 p. 36 illus., 33 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811532085
    Series Statement: Microorganisms for Sustainability, 19
    DDC: 630
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Agriculture. ; Microbial ecology. ; Microbial genetics. ; Plant biotechnology. ; Agriculture. ; Microbial Ecology. ; Microbial Genetics. ; Plant Biotechnology.
    Description / Table of Contents: Chapter 1. Phosphorus Solubilization and Mobilization: Mechanisms, Current Developments and Future Challenge -- Chapter 2. Potassium Solubilization and Mobilization: Functional Impact on Plant Growth for Sustainable Agriculture -- Chapter 3. Zinc Solubilization and Mobilization: A Promising Approach for Cereals Biofortification -- Chapter 4. Microbial ACC-deaminase attributes: perspectives and applications in stress agriculture -- Chapter 5. Plant Microbiomes with Phytohormones Attribute for Plant Growth and Adaptation under the Stress Conditions -- Chapter 6. Mechanisms of Plant Growth Promotion and Functional Annotation in Mitigation of Abiotic Stress -- Chapter 7. Microbiomes Associated with Plant Growing Under the Hypersaline Habitats and Mitigation of Salt Stress -- Chapter 8. Alleviation of Cold Stress by Psychrotrophic Microbes -- Chapter 9. Microbes-Mediated Mitigation of Drought Stress in Plants: Recent Trends and Future Challenges -- Chapter 10. Microbial Consortium with Multifunctional Plant Growth Promoting Attributes: Future Perspective in Agriculture -- Chapter 11. Cyanobacteria as Biofertilizers: Current Research, Commercial Aspects, and Future Challenges.
    Abstract: Microbes are ubiquitous in nature, and plant-microbe interactions are a key strategy for colonizing diverse habitats. The plant microbiome (epiphytic, endophytic and rhizospheric) plays an important role in plant growth and development and soil health. Further, rhizospheric soil is a valuable natural resource, hosting hotspots of microbes, and is vital in the maintenance of global nutrient balance and ecosystem function. The term endophytic microbes refers to those microorganisms that colonize the interior the plants. The phyllosphere is a common niche for synergism between microbes and plants and includes the leaf surface. The diverse group of microbes are key components of soil-plant systems, and where they are engaged in an extensive network of interactions in the rhizosphere/endophytic/phyllospheric they have emerged as an important and promising tool for sustainable agriculture. Plant microbiomes help to directly or indirectly promote plant growth using plant growth promoting attributes, and could potentially be used as biofertilizers/bioinoculants in place of chemical fertilizers. This book allows readers to gain an understanding of microbial diversity associated with plant systems and their role in plant growth, and soil health. Offering an overview of the state of the art in plant microbiomes and their potential biotechnological applications in agriculture and allied sectors, it is a valuable resource for scientists, researchers and students in the field of microbiology, biotechnology, agriculture, molecular biology, environmental biology and related subjects.
    Type of Medium: Online Resource
    Pages: XXII, 278 p. 31 illus., 29 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811532047
    Series Statement: Microorganisms for Sustainability, 20
    DDC: 630
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Fungi. ; Mycology. ; Microbiology. ; Agriculture. ; Plants Evolution. ; Plant biotechnology. ; Plants Development. ; Fungi. ; Agriculture. ; Plant Evolution. ; Plant Biotechnology. ; Plant Development.
    Description / Table of Contents: Agriculturally Important Fungi: Plant - Microbe Association for Mutual Benefits -- Endophytic Fungi: Diversity, Abundance, and Plant Growth Promoting Attributes -- The Role of Arbuscular Mycorrhizal Fungal Community in Paddy Soil -- Natural Arbuscular Mycorrhizal Colonization of Wheat and Maize Crops under different Agricultural Practices -- Arbuscular Mycorrhizal Fungi, and their Potential Applications for Sustainable Agriculture -- Phosphate Solubilizing Fungi: Current Perspective, Mechanisms and Potential Agricultural Applications -- Fungal Phytohormones: Plant Growth-Regulating Substances and their Applications in Crop Productivity -- Phytohormones Producing Fungal Communities: Metabolic Engineering for Abiotic Stress Tolerance in Crops -- Fungal Biofertilizers for Sustainable Agricultural Productivity -- Role of Algae-Fungi relationship in Sustainable Agriculture -- Fungi as a Biological Tool for Sustainable Agriculture -- Agriculturally Important Fungi for Crop Productivity: Current Research and Future Challenges.
    Abstract: Microbes are ubiquitous in nature. Among microbes, fungal communities play an important role in agriculture, the environment, and medicine. Vast fungal diversity has been associated with plant systems, namely epiphytic fungi, endophytic fungi, and rhizospheric fungi. These fungi associated with plant systems play an important role in plant growth, crop yield, and soil health. Rhizospheric fungi, present in rhizospheric zones, get their nutrients from root exudates released by plant root systems, which help with their growth, development, and microbe activity. Endophytic fungi typically enter plant hosts through naturally occurring wounds that are the result of plant growth, through root hairs, or at epidermal conjunctions. Phyllospheric fungi may survive or proliferate on leaves depending on material influences in leaf diffuseness or exudates. The diverse nature of these fungal communities is a key component of soil-plant systems, where they are engaged in a network of interactions endophytically, phyllospherically, as well as in the rhizosphere, and thus have emerged as a promising tool for sustainable agriculture. These fungal communities promote plant growth directly and indirectly by using plant growth promoting (PGP) attributes. These PGP fungi can be used as biofertilizers and biocontrol agents in place of chemical fertilizers and pesticides for a more eco-friendly method of promoting sustainable agriculture and environments. This first volume of a two-volume set covers the biodiversity of plant-associated fungal communities and their role in plant growth promotion, the mitigation of abiotic stress, and soil fertility for sustainable agriculture. This book should be useful to those working in the biological sciences, especially for microbiologists, microbial biotechnologists, biochemists, and researchers and scientists of fungal biotechnology.
    Type of Medium: Online Resource
    Pages: XVII, 300 p. 33 illus., 22 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030459710
    Series Statement: Fungal Biology,
    DDC: 579.5
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Microbiology. ; Urban ecology (Biology). ; Biochemistry. ; Microbiology. ; Urban Ecology. ; Biochemistry.
    Description / Table of Contents: Chapter 1. Microbial Community Present on the Reverse Side of a Deteriorated Canvas -- Chapter 2. Microbial Biocleaning Technologies for Cultural Heritage: Current Status and Future Challenges -- Chapter 3. Role of Bacterial Communities to Prevent the Microbial Growth on Cultural Heritage -- Chapter 4. Entomogenous Fungi and the Conservation of the Cultural Heritage -- Chapter 5. Microorganisms and their Enzymes as Biorestoration Agents -- Chapter 6. Bioremediation of Cultural Heritage: Removal of Organic Substances -- Chapter 7. The Role Microorganisms for the Removal of Sulphates on Artistic Stoneworks -- Chapter 8. Microbiological Tools for Cultural Heritage Conservation -- Chapter 9. Biotechnology to Restoration and Conservation -- Chapter 10. Biocement: A novel approach in the restoration of construction materials.
    Abstract: Our country’s cultural legacy is one of the world’s most diverse, drawing millions of visitors every year to our convents and monuments, and to our museums, libraries, concert halls and festivals. In addition, it is a dynamic trigger of economic activity and jobs. Among the various scientific branches, microbial biotechnology offers an innovative and precise approach to the complexity of problems that restorers face in their daily work. This book discusses a range of topics, including the biodiversity of microbial communities from various cultural heritage monuments, microbial biotechnological cleaning techniques, the role of bacterial fungal communities for the conservation of cultural heritage, and microbial enzymes and their potential applications as biorestoration agents. Written by internationally recognized experts, and providing up-to-date and detailed insights into microbial biotechnology approaches to cultural heritage monuments, the book is a valuable resource for biological scientists, especially microbiologists, microbial biotechnologists, biochemists and microbial biotechnologists.
    Type of Medium: Online Resource
    Pages: XV, 198 p. 19 illus., 13 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9789811534010
    DDC: 579
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Microbiology. ; Industrial microbiology. ; Energy policy. ; Energy and state. ; Microbiology. ; Industrial Microbiology. ; Energy Policy, Economics and Management.
    Description / Table of Contents: Microbial Bioresources for Biofuels Production: Fundamentals and Applications -- Bioprospecting of Microorganisms for Biofuel Production -- Cyanobacterial biofuel production: Current Development, Challenges and Future Needs -- Energy and Carbon Balance of Microalgae Production: Environmental Impacts and Constraints -- Sustainable Biofuel Production and Climate Change Impacts on Environment -- Photosynthetic Production of Ethanol Using Genetically Engineered Cyanobacteria -- Biofuel Synthesis by Extremophilic Microorganisms -- Microbial Biofuel and their Impact on Environment and Agriculture -- Biofuels Production from Diverse Bioresources: Global Scenario and Future Challenges -- Bioconversion and Biorefineries: Recent Advances and Applications -- Microbial Technologies for Biorefineries: Current Research and Future Applications -- Microbial Bioresources and their Potential Applications for Bioenergy Production for Sustainable Developments -- Lignocellulosic Biofuels Production Technologies and Their Application for Bioenergy Systems -- Jatropha: A Potential Bioresource for Biofuel Production -- Bioresources for Sustainable Biofuels Production: Current Development, Commercial Aspects and Applications -- Biofuel production: Global scenario and Future Challenges -- Advances in Microbial Bioresources for Sustainable Biofuels Production: Current Research and Future Challenges.
    Abstract: This book focuses on the different kinds of biofuels and biofuel resources. Biofuels represent a major type of renewable energy. As part of a larger bio-economy, they are closely linked to agriculture, forestry and manufacturing. Biofuels have the potential to improve regional energy access, reduce dependence on fossil fuels and contribute to climate protection. Further, this alternative form of energy could revitalize the forestry and agricultural sector and promote the increased use of renewable resources as raw materials in a range of industrial processes. Efforts are continuously being made to develop economically competitive biofuels, and microbes play important roles in the production of biofuels from various bioresources. This book elaborates on recent advances in existing microbial technologies and on sustainable approaches to improving biofuel production processes. Additionally, it examines trends in, and the limitations of, existing processes and technologies. The book offers a comprehensive overview of microbial bioresources, microbial technologies, advances in bioconversion and biorefineries, as well as microbial and metabolic engineering for efficient biofuel production. Readers will also learn about the environmental impacts and the influence of climate change on the sustainability of biofuel production. This book is intended for researchers and students whose work involves biorefinery technologies, microbiology, biotechnology, agriculture, environmental biology and related fields.
    Type of Medium: Online Resource
    Pages: XVII, 387 p. 79 illus., 71 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030539337
    Series Statement: Biofuel and Biorefinery Technologies, 11
    DDC: 579
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...