ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019
    Description: Micro-/nanomotors colloidal particles have attracted increasing interest as composite surfactants, owing to the combined advantages of both Janus solid surfactants and micro-/nanomotors. Here we put micro-/nanomotors colloidal particles into hollow polymeric micro-encapsulates. An intelligent polymeric nanocapsule was prepared for enhanced oil recovery by the self-assembly method. The particle size range of the polymeric capsule can be controlled between 20 to 1000 nm by adjusting the cross-linking thickness of the capsule’s outer membrane. The average particle size of polymeric capsules prepared in the study was 300 nm. The structure and properties of the Intelligent polymeric nanocapsule was characterized by a wide range of technics such as Fourier transform infrared spectroscopy, scanning electron microscopy by laser diffraction, fluorescence microscopy, pendant drop tensiometer, laser particle size instrument, and interface tension analyzer. It was found that the intelligent polymeric nanocapsule exhibited significant interfacial activity at the oil-water interface. When the Janus particles’ concentration reached saturation concentration, the adsorption of the amphiphilic nanoparticles at the interface was saturated, and the equilibrium surface tension dropped to around 31 mN/m. When the particles’ concentration reached a critical concentration of aggregation, the Gibbs stability criterion was fulfilled. The intelligent polymeric nanocapsule system has a better plugging and enhanced oil recovery capacity. The results obtained provide fundamental insights into the understanding of the assembly behavior and emulsifying properties of the intelligent polymeric nanocapsule, and further demonstrate the future potential of the intelligent polymeric nanocapsule used as colloid surfactants for enhanced oil recovery applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-07
    Description: The issue of frequency stability of microgrids under islanded operation mode and mode transfer has attracted particular attention recently. In this paper, a cooperative frequency control method, which consists of a microgrid central control (MGCC) and microgrid local control (MGLC), is proposed to achieve a seamless transfer from grid-connected to islanded mode, and hence increase the frequency stability of islanded microgrids during both primary and secondary frequency control. A power deficiency prediction and distribution method is proposed in MGCC to effectively distribute and utilize the power and loads, and accomplish the cooperative control of all microgrid units. With regards to MGLC, a Hopfield fuzzy neural network control (HFNNC) is applied to make the corresponding frequency control of DFIG-SMES more adaptive. Meanwhile a state of capacity (SOC) control is utilized in battery energy storage (BES) to extend battery life. Simulation results indicate that the proposed frequency control approach can maintain the frequency stability of islanded microgrids even in emergency conditions.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-31
    Description: Inverter voltage control is an important task in the operation of a DC/AC microgrid system. To improve the inverter voltage control dynamics, traditional approaches attempt to measure and feedforward the load current, which, however, needs remote measurement with communications in a microgrid system with distributed loads. In this paper, a load current observer (LCO) based control strategy, which does not need remote measurement, is proposed for sinusoidal signals tracking control of a three-phase inverter of the microgrid. With LCO, the load current is estimated precisely, acting as the feedforward of the dual-loop control, which can effectively enlarge the stability margin of the control system and improve the dynamic response to load disturbance. Furthermore, multiple PR regulators are applied in this strategy conducted in a stationary  frame to suppress the transient fluctuations and the total harmonic distortion (THD) of the output voltage and achieve faster transient performance compared with traditional dual-loop control in a rotating dq0 frame under instantaneous change of various types of load (i.e., balanced load, unbalanced load, and nonlinear load). The parameters of multiple PR regulators are analyzed and selected through the root locus method and the stability of the whole control system is evaluated and analyzed. Finally, the validity of the proposed approach is verified through simulations and a three-phase prototype test system with a TMS320F28335 DSP.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-24
    Electronic ISSN: 2053-1591
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...