ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The virtual bumper is a safeguarding mechanism for autonomous and remotely operated robots. In this paper we take a new approach to the virtual bumper system by using an old statistical test. By using a modified version of Wald's sequential probability ratio test we demonstrate that we can reduce the number of false positive reported by the virtual bumper, thereby saving valuable mission time. We use the concept of sequential probability ratio to control vehicle speed in the presence of possible obstacles in order to increase certainty about whether or not obstacles are present. Our new algorithm reduces the chances of collision by approximately 98 relative to traditional virtual bumper safeguarding without speed control.
    Keywords: Cybernetics, Artificial Intelligence and Robotics; Statistics and Probability
    Type: ARC-E-DAA-TN29911 , 2016 International Conference on Robotics and Automation (ICRA 2016); May 16, 2016 - May 21, 2016; Stockholm; Sweden
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-23
    Description: This paper addresses the problem of localization for landing on the surface of icy moons, like Europa or Enceladus. Due to the possibility of specular reflection as well as high bulk albedo, icy surfaces present new challenges that make traditional vision-based navigation systems relying on visible imagery unreliable. We propose augmenting visible light cameras with a thermal-infrared camera using inverse-depth parameterized monocular EKF-SLAM to address problems arising from the appearance of icy moons. Results were obtained from a novel procedural Europa surface simulation which models the appearance and the thermal properties simultaneously from physically-based methods. In this framework, we show that thermal features improve localization by 23% on average when compared to a visible camera. Moreover, fusing both sensing modalities increases the improvement in localization to 31% on average, compared to using a visible light camera alone.
    Keywords: Optics; Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN68167 , NASA/TM-2019-220241
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Current technologies of exploring habitable areas of icy moons are limited to flybys of space probes. This research project addresses long-term navigation of icy moons by developing a MATLAB adjustable trajectory based on the volume of plume material observed. Plumes expose materials from the sub-surface without accessing the subsurface. Aerial vehicles capable of scouting vapor plumes and detecting maximum plume material volumes, which are considered potentially habitable in inhospitable environments, would enable future deep-space missions to search for extraterrestrial organisms on the surface of icy moons. Although this platform is still a prototype, it demonstrates the potential aerial vehicles can have in improving the capabilities of long-term space navigation and enabling technology for detecting life in extreme environments. Additionally, this work is developing the capabilities that could be utilized as a platform for space biology research. For example, aerial vehicles that are sent to map extreme environments of icy moons or the planet Mars, could also carry small payloads with automated cell-biology experiments, designed to probe the biological response of low-gravity and high-radiation planetary environments, serving as a pathfinder for future human missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN48090 , American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper describes a structured light-based sensor for hazard avoidance in planetary environments. The system presented here can also be used in terrestrial applications constrained by reduced onboard power and computational complexity and low illumination conditions. The sensor is on a calibrated camera and laser dot projector system. The onboard hazard avoidance system determines the position of the projected dots in the image and through a triangulation process detects potential hazards. The paper presents the design parameters for this sensor and describes the image based solution for hazard avoidance. The system presented here was tested extensively in day and night conditions in Lunar analogue environments. The current system achieves over 97 detection rate with 1.7 false alarms over 2000 images.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN46999 , IROS 2017- International Conference on Intelligent Robots and Systems; Sep 24, 2017 - Sep 28, 2017; Vancouver, BC; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-31
    Description: When planning planetary rover missions it is useful to develop intuition and skills driving in, quite literally, alien environments before incurring the cost of reaching said locales. Simulators make it possible to operate in environments that have the physical characteristics of target locations without the expense and overhead of extensive physical tests. To that end, NASA Ames and Open Robotics collaborated on a Lunar rover driving simulator based on the open source Gazebo simulation platform and leveraging ROS (Robotic Operating System) components. The simulator was integrated with research and mission software for rover driving, system monitoring, and science instrument simulation to constitute an end-to-end Lunar mission simulation capability. Although we expect our simulator to be applicable to arbitrary Lunar regions, we designed to a reference mission of prospecting in polar regions. The harsh lighting and low illumination angles at the Lunar poles combine with the unique reflectance properties of Lunar regolith to present a challenging visual environment for both human and computer perception. Our simulator placed an emphasis on high fidelity visual simulation in order to produce synthetic imagery suitable for evaluating human rover drivers with navigation tasks, as well as providing test data for computer vision software development.In this paper, we describe the software used to construct the simulated Lunar environment and the components of the driving simulation. Our synthetic terrain generation software artificially increases the resolution of Lunar digital elevation maps by fractal synthesis and inserts craters and rocks based on Lunar size-frequency distribution models. We describe the necessary enhancements to import large scale, high resolution terrains into Gazebo, as well as our approach to modeling the visual environment of the Lunar surface. An overview of the mission software system is provided, along with how ROS was used to emulate flight software components that had not been developed yet. Finally, we discuss the effect of using the high-fidelity synthetic Lunar images for visual odometry. We also characterize the wheel slip model, and find some inconsistencies in the produced wheel slip behaviour.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN64600 , ARC-E-DAA-TN61930 , IEEE Aerospace Conference; Mar 02, 2019 - Mar 09, 2019; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: We report here on a survey of a lava tube cave by a rover that is instrumented for astrobiology missions. The NASA Ames testbed rover, CaveR, was deployed in Valentine Cave in Lava Beds National Monument (N. CA, USA) during August of 2018. The rover carried an instrument package consisting of Near Infrared and Visible Spectrometer System (NIRVSS) a point spectrometer operating in 1590-3400 nm range, sensitive to H2O and -OH bearing minerals, pyroxenes, and carbonates (Roush, et al 2018); the bore sighted Drill Operations Camera (DOC), a monochrome imager illuminated by LEDs at 410, 540, 640, 740, 905 and 940 nm; a Realsense depth sensor system for 3D model generation; and a high resolution DSLR stereo camera. The payload was mounted on a tiltable instrument platform attached to the left side of the rover. The rover was driven manually in the cave by field operators, following instructions from a remote science operations team, and simulating a mission concept with science-guided autonomy. A simulated mission took place for 3 days with a team of 3 scientists selecting targets and interpreting data from the payload. To begin the mission, the rover drove along one wall of the cave imaging continuously with the Realsense in 20 m cave segments, three total. At the start of each day, the images from a 20m segment and a panorama stitched from them were provided to the science team to examine. The science team used these data to prioritize specific points along the cave wall for the collection of NIRVSS, DOC, and DSLR data. The objective of the data collection was to identify and study putative biological and mineralogical features in the cave. The data were delivered in xGDS, a customized mapping, planning, and data base management software developed at NASA Ames (Lee, et al 2013). Once the targets for further observations were selected, a plan for collecting the observations (positions in the cave and pointing for each requested observation) was constructed using xGDS and delivered to a rover team to execute the science data collection plan. Acquired data were delivered back to the science team for analysis. Preliminary results from the experiment illustrate the utility of the system (rover plus payload) to study the cave geology and mineralogy and its potential for identifying biomineral features.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN69699 , AbSciCon 2019; Jun 24, 2019 - Jun 28, 2019; Bellevuw, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: While planetary pits and caves have been fiction for a century, they have been seen from orbit only in the last few years. These discoveries exceed the fantasies in diversity, scale, and abundance. For pits and caves, this is the age of discovery, ranging from a few pits on the Moon and Mars in 2009 to hundreds within the time of this research, with many more to come. Pits with subsurface voids have been confirmed on the Moon and Mars and indicated on Venus, Phobos, Eros, Gaspra, Ida, Enceladus, and Europa. Compelling next steps are surface and subsurface exploration.Pits and caves are opportunistic study targets for unique origins, geology, and climate that will broadly impact planetary science. Holes on Mars are of particular interest because their interior caves are relatively protected from the harsh surface, making them good candidates to contain Martian life. Pits are prime targets for possible future spacecraft, robots, and even human interplanetary explorers. Caves and caverns could be ready-_made shelters for future Moon and Mars explorers and colonists. Discoveries to date look down from on high with satellites but cannot reveal the wonders of caves. They cannot enter, touch, or view pits up close. Genuine exploration is only achievable through surface missions. Robotic missions can assess suitability for safe entry and habitation, plus inform techniques for developing subsurface infrastructure.Missions into planetary voids redefine the future of exploration, science, and habitation beyond Earth. We can reach this future only by targeting specific technological advancement now. Prior missions and current roadmap priorities target regions of benign terrain. While in-cave concepts have been postulated, the critical technologies have not been identified and demonstrated.While robotic exploration of skylights and caves can seek out life, investigate geology and origins, and open the subsurface of other worlds to humankind, it is a daunting venture. Planetary voids present perilous terrain requiring innovative technologies for access, exploration, and modeling. These same technologies are broadly applicable to explorations of rough and/or subsurface planetary environments, including caves, craters, cliffs, and rock fields. This research speculates on the possibilities and means of such exploration with fundamental contributions to exploring, modeling, and visualizing this new class of large-scale, highly three-dimensional concave planetary features.
    Keywords: Lunar and Planetary Science and Exploration
    Type: HQ-E-DAA-TN63106
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Surface rover operations at the polar regions of airless bodies, particularly the Moon, are of particular interest to future NASA science missions such as Resource Prospector (RP). Polar optical conditions present challenges to conventional imaging techniques, with repercussions to driving, safeguarding and science. High dynamic range, long cast shadows, opposition and white out conditions are all significant factors in appearance. RP is currently undertaking an effort to characterize stereo vision performance in polar conditions through physical laboratory experimentation with regolith simulants, obstacle distributions and oblique lighting.
    Keywords: Lunar and Planetary Science and Exploration; Optics
    Type: ARC-E-DAA-TN34061 , NASA Exploration Science Forum 2016; Jul 20, 2016 - Jul 22, 2016; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-12-05
    Description: We present an analog dataset that provides examples of possible terrain features, geometry, and appearance at the 1-10cm scale on ocean worlds/icy moons such as Europa, Enceladus, and Pluto. The motivation for collecting this dataset was a lack of available high-resolution digital models suitable for development of surface missions to these bodies, including use for simulation of mechanics, sampling, and imaging. NASA field opportunities to Death Valley, California and the Atacama Desert, Chile were leveraged in order to observe and record analog sites.
    Keywords: Geosciences (General)
    Type: ARC-E-DAA-TN75700
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...