ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-08
    Description: This paper discusses a framework for microdynamic analysis -- analyzing a structure for nonlinear dynamic behavior in the nanometric regime -- and illustrates how microdynamic behaviors such as microlurch, joint snaps, and harmonic distortion fit within the framework.
    Type: Intelligent Sensors and Advanced Manufacturing Symposium; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Description: Damping of axial and bending mode vibrations in giant magnetoelastic polycrystalline TbDy alloys was studied at cryogenic temperatures. All specimens of TbDy were arc-melted in the proper composition ratio and dropped into a chilled copper mold. Additional treatments consisted of cold plane-rolling to induce crystallographic texture and then heat-treating to relieve internal stress. Mechanical hysteretic losses were measured at various strains, frequencies, and loading configurations down to 77 K. Both as-cast and textured polycrystalline TbDy samples were tested along with an aluminum specimen for comparison. Loss factors at multiple natural vibration frequencies of the samples were measured for axial modes. Larger damping rates were measured for axial mode vibrations than for bending mode vibrations, possibly reflecting the larger specimen volume contributing to magnetoelastic damping. At LN2 temperatures TbDy materials demonstrated q 〉 0.05 at 0.01 Hz and q 〉 0.1 at higher frequencies from 0.6-1.5 kHz.
    Keywords: Electronics and Electrical Engineering
    Type: Transducing Materials and Devices; Bruges; Belgium
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper describes the design and component testing of an aerobot that would be capable of global in situ exploration of Saturn's moon, Titan, over a 6 to 12 month mission lifetime. The proposed aerobot is a propeller-driven, buoyant vehicle that resembles terrestrial airships. However, the extremely cold Titan environment requires the use of cryogenic materials of construction and careful thermal design for protection of temperature-sensitive payload elements. Multiple candidate balloon materials have been identified based on extensive laboratory testing at 77 K.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: 35th Committee on Space Research (COSPAR) Scientific Assembly; Jul 18, 2004 - Jul 25, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper describes the design and component testing of an aerobot that would be capable of global in situ exploration of Saturn's moon, Titan, over a 6 to 12 month mission lifetime. The proposed aerobot is a propeller-driven, buoyant vehicle that resembles terrestrial airships. However, the extremely cold Titan environment requires the use of cryogenic materials of construction and careful thermal design for protection of temperature-sensitive payload elements. Multiple candidate balloon materials have been identified based on extensive laboratory testing at 77 K. The most promising materials to date are laminates comprised of polyester fabrics and/or films with areal densities in the range of 40-100 g/m2. The aerobot hull is a streamlined ellipsoid 14 meters in length with a maximum diameter of 3 meters. The enclosed volume of 60 m3 is sufficient to float a mass of 234 kg at a maximum altitude of 8 km at Titan. Forward and aft ballonets are located inside the hull to enable the aerobot to descend to the surface while preserving a fully inflated streamlined shape. Altitude changes are effected primarily through thrust vectoring of the twin main propellers, with pressure modulated buoyancy change via the ballonets available as a slower backup option. A total of 100 W of electrical power is provided to the vehicle by a radioisotope power supply. Up to half of this power is available to the propulsion system to generate a top flight speed in the range of 1-2 m/s. This speed is expected to be greater than the near surface winds at Titan, enabling the aerobot to fly to and hover over targets of interest. A preliminary science payload has been devised for the aerobot to give it the capability for aerial imaging of the surface, atmospheric observations and sampling, and surface sample acquisition and analysis. Targeting, hovering, surface sample acquisition and vehicle health monitoring and automatic safing actions will all require significant on-board autonomy due to the over two hour round trip light time between Titan and Earth. An autonomy architecture and a core set of perception, reasoning and control technologies is under development using a free-flying airship testbed of approximately the same size as the proposed Titan aerobot. Data volume from the Titan science mission is expected to be on the order of 100-300 Mbit per day transmitted either direct to Earth through an 0.8 m high gain antenna or via an orbiter relay using an omni-directional antenna on the aerobot.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: 35th Committee on Space Research (COSPAR) Scientific Assembly; Jul 18, 2004 - Jul 25, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This paper will describe a novel concept for constructing off-axis membrane reflector surfaces. Membrane reflectors have been extensively studied, including investigations into inflated lenticular architectures, shaping by spin casting, shaping using electrostatic forces, and shaping by evacuating behind a membrane surface stretched between circular or annular-shaped supports.
    Type: AIAA Structures, Dynamics, Materials Conference; Apr 19, 2004; Palm Springs, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...