ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2010-08-05
    Print ISSN: 1610-2940
    Electronic ISSN: 0948-5023
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2017-03-20
    Description: In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-08-25
    Description: Energies, Vol. 10, Pages 1258: An Intelligent Hybrid Heuristic Scheme for Smart Metering based Demand Side Management in Smart Homes Energies doi: 10.3390/en10091258 Authors: Awais Manzoor Nadeem Javaid Ibrar Ullah Wadood Abdul Ahmad Almogren Atif Alamri Smart grid is an emerging technology which is considered to be an ultimate solution to meet the increasing power demand challenges. Modern communication technologies have enabled the successful implementation of smart grid (SG), which aims at provision of demand side management mechanisms (DSM), such as demand response (DR). In this paper, we propose a hybrid technique named as teacher learning genetic optimization (TLGO) by combining genetic algorithm (GA) with teacher learning based optimization (TLBO) algorithm for residential load scheduling, assuming that electric prices are announced on a day-ahead basis. User discomfort is one of the key aspects which must be addressed along with cost minimization. The major focus of this work is to minimize consumer electricity bill at minimum user discomfort. Load scheduling is formulated as an optimization problem and an optimal schedule is achieved by solving the minimization problem. We also investigated the effect of power-flexible appliances on consumers’ bill. Furthermore, a relationship among power consumption, cost and user discomfort is also demonstrated by feasible region. Simulation results validate that our proposed technique performs better in terms of cost reduction and user discomfort minimization, and is able to obtain the desired trade-off between consumer electricity bill and user discomfort.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-08-04
    Description: Energies, Vol. 10, Pages 1131: Demand Side Management in Nearly Zero Energy Buildings Using Heuristic Optimizations Energies doi: 10.3390/en10081131 Authors: Nadeem Javaid Sardar Hussain Ibrar Ullah Muhammad Noor Wadood Abdul Ahmad Almogren Atif Alamri Today’s buildings are responsible for about 40% of total energy consumption and 30–40% of carbon emissions, which are key concerns for the sustainable development of any society. The excessive usage of grid energy raises sustainability issues in the face of global changes, such as climate change, population, economic growths, etc. Traditionally, the power systems that deliver this commodity are fuel operated and lead towards high carbon emissions and global warming. To overcome these issues, the recent concept of the nearly zero energy building (nZEB) has attracted numerous researchers and industry for the construction and management of the new generation buildings. In this regard, this paper proposes various demand side management (DSM) programs using the genetic algorithm (GA), teaching learning-based optimization (TLBO), the enhanced differential evolution (EDE) algorithm and the proposed enhanced differential teaching learning algorithm (EDTLA) to manage energy and comfort, while taking the human preferences into consideration. Power consumption patterns of shiftable home appliances are modified in response to the real-time price signal in order to get monetary benefits. To further improve the cost and user discomfort objectives along with reduced carbon emission, renewable energy sources (RESs) are also integrated into the microgrid (MG). The proposed model is implemented in a smart residential complex of multiple homes under a real-time pricing environment. We figure out two feasible regions: one for electricity cost and the other for user discomfort. The proposed model aims to deal with the stochastic nature of RESs while introducing the battery storage system (BSS). The main objectives of this paper include: (1) integration of RESs; (2) minimization of the electricity bill (cost) and discomfort; and (3) minimizing the peak to average ratio (PAR) and carbon emission. Additionally, we also analyze the tradeoff between two conflicting objectives, like electricity cost and user discomfort. Simulation results validate both the implemented and proposed techniques.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-09
    Description: Energies, Vol. 10, Pages 1546: Towards Cost and Comfort Based Hybrid Optimization for Residential Load Scheduling in a Smart Grid Energies doi: 10.3390/en10101546 Authors: Nadeem Javaid Fahim Ahmed Ibrar Ullah Samia Abid Wadood Abdul Atif Alamri Ahmad Almogren In a smart grid, several optimization techniques have been developed to schedule load in the residential area. Most of these techniques aim at minimizing the energy consumption cost and the comfort of electricity consumer. Conversely, maintaining a balance between two conflicting objectives: energy consumption cost and user comfort is still a challenging task. Therefore, in this paper, we aim to minimize the electricity cost and user discomfort while taking into account the peak energy consumption. In this regard, we implement and analyse the performance of a traditional dynamic programming (DP) technique and two heuristic optimization techniques: genetic algorithm (GA) and binary particle swarm optimization (BPSO) for residential load management. Based on these techniques, we propose a hybrid scheme named GAPSO for residential load scheduling, so as to optimize the desired objective function. In order to alleviate the complexity of the problem, the multi dimensional knapsack is used to ensure that the load of electricity consumer will not escalate during peak hours. The proposed model is evaluated based on two pricing schemes: day-ahead and critical peak pricing for single and multiple days. Furthermore, feasible regions are calculated and analysed to develop a relationship between power consumption, electricity cost, and user discomfort. The simulation results are compared with GA, BPSO and DP, and validate that the proposed hybrid scheme reflects substantial savings in electricity bills with minimum user discomfort. Moreover, results also show a phenomenal reduction in peak power consumption.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-21
    Description: Energies, Vol. 11, Pages 1002: A Domestic Microgrid with Optimized Home Energy Management System Energies doi: 10.3390/en11041002 Authors: Zafar Iqbal Nadeem Javaid Saleem Iqbal Sheraz Aslam Zahoor Ali Khan Wadood Abdul Ahmad Almogren Atif Alamri Microgrid is a community-based power generation and distribution system that interconnects smart homes with renewable energy sources (RESs). Microgrid efficiently and economically generates power for electricity consumers and operates in both islanded and grid-connected modes. In this study, we proposed optimization schemes for reducing electricity cost and minimizing peak to average ratio (PAR) with maximum user comfort (UC) in a smart home. We considered a grid-connected microgrid for electricity generation which consists of wind turbine and photovoltaic (PV) panel. First, the problem was mathematically formulated through multiple knapsack problem (MKP) then solved by existing heuristic techniques: grey wolf optimization (GWO), binary particle swarm optimization (BPSO), genetic algorithm (GA) and wind-driven optimization (WDO). Furthermore, we also proposed three hybrid schemes for electric cost and PAR reduction: (1) hybrid of GA and WDO named WDGA; (2) hybrid of WDO and GWO named WDGWO; and (3) WBPSO, which is the hybrid of BPSO and WDO. In addition, a battery bank system (BBS) was also integrated to make our proposed schemes more cost-efficient and reliable, and to ensure stable grid operation. Finally, simulations were performed to verify our proposed schemes. Results show that our proposed scheme efficiently minimizes the electricity cost and PAR. Moreover, our proposed techniques, WDGA, WDGWO and WBPSO, outperform the existing heuristic techniques.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-19
    Description: Sustainability, Vol. 10, Pages 1245: Towards Efficient Energy Management and Power Trading in a Residential Area via Integrating a Grid-Connected Microgrid Sustainability doi: 10.3390/su10041245 Authors: Sheraz Aslam Nadeem Javaid Farman Ali Khan Atif Alamri Ahmad Almogren Wadood Abdul Demand side management (DSM) is one of the most challenging areas in smart grids, which provides multiple opportunities for residents to minimize electricity cost. In this work, we propose a DSM scheme for electricity expenses and peak to average ratio (PAR) reduction using two well-known heuristic approaches: the cuckoo search algorithm (CSA) and strawberry algorithm (SA). In our proposed scheme, a smart home decides to buy or sell electricity from/to the commercial grid for minimizing electricity costs and PAR with earning maximization. It makes a decision on the basis of electricity prices, demand and generation from its own microgrid. The microgrid consists of a wind turbine and solar panel. Electricity generation from the solar panel and wind turbine is intermittent in nature. Therefore, an energy storage system (ESS) is also considered for stable and reliable power system operation. We test our proposed scheme on a set of different case studies. The simulation results affirm our proposed scheme in terms of electricity cost and PAR reduction with profit maximization. Furthermore, a comparative analysis is also performed to show the legitimacy and productiveness of CSA and SA.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-03-08
    Description: In recent years, demand side management (DSM) techniques have been designed for residential, industrial and commercial sectors. These techniques are very effective in flattening the load profile of customers in grid area networks. In this paper, a heuristic algorithms-based energy management controller is designed for a residential area in a smart grid. In essence, five heuristic algorithms (the genetic algorithm (GA), the binary particle swarm optimization (BPSO) algorithm, the bacterial foraging optimization algorithm (BFOA), the wind-driven optimization (WDO) algorithm and our proposed hybrid genetic wind-driven (GWD) algorithm) are evaluated. These algorithms are used for scheduling residential loads between peak hours (PHs) and off-peak hours (OPHs) in a real-time pricing (RTP) environment while maximizing user comfort (UC) and minimizing both electricity cost and the peak to average ratio (PAR). Moreover, these algorithms are tested in two scenarios: (i) scheduling the load of a single home and (ii) scheduling the load of multiple homes. Simulation results show that our proposed hybrid GWD algorithm performs better than the other heuristic algorithms in terms of the selected performance metrics.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...