ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-21
    Description: The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Mitigation benefits through the use of forest products are affected by product lifecycles, which determine the duration of carbon storage in wood products and substitution benefits where emissions are avoided by using wood products instead of other emissions-intensive building products and energy fuels. Here we determined displacement factors for wood substitution in the built environment and bioenergy at the national level in Canada. For solid wood products, we compiled a basket of end-use products and determined the reduction in emissions for two functionally equivalent products: a more wood-intensive product versus a less wood-intensive one. Avoided emissions for end-use products basket were weighted by Canadian consumption statistics to reflect national wood uses, and avoided emissions were further partitioned into displacement factors for sawnwood and panels. We also examined two bioenergy feedstock scenarios ( constant supply and constrained supply ) to estimate displacement factors for bioenergy using an optimized selection of bioenergy facilities which maximized avoided emissions from fossil fuels. Results demonstrated that the average displacement factors were found to be similar: product displacement factors were 0.54 tC displaced per tC of used for sawnwood and 0.45 tC tC −1 for panels; energy displacement factors for the two feedstock scenarios were 0.47 tC tC −1 for the constant supply and 0.89 tC tC −1 for the constrained supply . However, there was a wide range of substitution impacts. The greatest avoided emissions occurred when wood was substituted for steel and concrete in buildings, and when bioenergy from heat facilities and/or combined heat and power facilities was substituted for energy from high-emissions fossil fuels. We conclude that (i) national-level substitution benefits need to be considered within a systems perspective on climate change mitigation to avoid the development of policies that deliver no net benefits to the atmosphere, (ii) the use of long-lived wood products in buildings to displace steel and concrete reduces GHG emissions, (iii) the greatest bioenergy substitution benefits are achieved by using a mix of facility types and capacities to displace emissions-intensive fossil fuels. This article is protected by copyright. All rights reserved.
    Print ISSN: 1757-1693
    Electronic ISSN: 1757-1707
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-04-25
    Description: The mountain pine beetle (Dendroctonus ponderosae Hopkins, Coleoptera: Curculionidae, Scolytinae) is a native insect of the pine forests of western North America, and its populations periodically erupt into large-scale outbreaks. During outbreaks, the resulting widespread tree mortality reduces forest carbon uptake and increases future emissions from the decay of killed trees. The impacts of insects on forest carbon dynamics, however, are generally ignored in large-scale modelling analyses. The current outbreak in British Columbia, Canada, is an order of magnitude larger in area and severity than all previous recorded outbreaks. Here we estimate that the cumulative impact of the beetle outbreak in the affected region during 2000-2020 will be 270 megatonnes (Mt) carbon (or 36 g carbon m(-2) yr(-1) on average over 374,000 km2 of forest). This impact converted the forest from a small net carbon sink to a large net carbon source both during and immediately after the outbreak. In the worst year, the impacts resulting from the beetle outbreak in British Columbia were equivalent to approximately 75% of the average annual direct forest fire emissions from all of Canada during 1959-1999. The resulting reduction in net primary production was of similar magnitude to increases observed during the 1980s and 1990s as a result of global change. Climate change has contributed to the unprecedented extent and severity of this outbreak. Insect outbreaks such as this represent an important mechanism by which climate change may undermine the ability of northern forests to take up and store atmospheric carbon, and such impacts should be accounted for in large-scale modelling analyses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kurz, W A -- Dymond, C C -- Stinson, G -- Rampley, G J -- Neilson, E T -- Carroll, A L -- Ebata, T -- Safranyik, L -- England -- Nature. 2008 Apr 24;452(7190):987-90. doi: 10.1038/nature06777.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, V8Z 1M5, Canada. wkurz@nrcan.gc.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18432244" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/chemistry ; Beetles/*metabolism ; British Columbia ; Carbon/*metabolism ; Computer Simulation ; *Ecosystem ; Feedback, Physiological ; *Greenhouse Effect ; Monte Carlo Method ; Pinus/*metabolism ; Plant Diseases ; Trees/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-06-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Titus, Brian D -- Maynard, Douglas G -- Dymond, Caren C -- Stinson, Graham -- Kurz, Werner A -- New York, N.Y. -- Science. 2009 Jun 12;324(5933):1389-90; author reply 1390-1. doi: 10.1126/science.324_1389c.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Natural Resources Canada, Pacific Forestry Centre, Victoria, BC V8Z 1M5, Canada. Brian.Titus@NRCan-RNCan.gc.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19520938" target="_blank"〉PubMed〈/a〉
    Keywords: Biomass ; *Ecosystem ; *Energy-Generating Resources ; European Union ; *Trees ; United States ; *Wood
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-07-19
    Description: The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 +/- 0.4 petagrams of carbon per year (Pg C year(-1)) globally for 1990 to 2007. We also estimate a source of 1.3 +/- 0.7 Pg C year(-1) from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 +/- 0.5 Pg C year(-1) partially compensated by a carbon sink in tropical forest regrowth of 1.6 +/- 0.5 Pg C year(-1). Together, the fluxes comprise a net global forest sink of 1.1 +/- 0.8 Pg C year(-1), with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Yude -- Birdsey, Richard A -- Fang, Jingyun -- Houghton, Richard -- Kauppi, Pekka E -- Kurz, Werner A -- Phillips, Oliver L -- Shvidenko, Anatoly -- Lewis, Simon L -- Canadell, Josep G -- Ciais, Philippe -- Jackson, Robert B -- Pacala, Stephen W -- McGuire, A David -- Piao, Shilong -- Rautiainen, Aapo -- Sitch, Stephen -- Hayes, Daniel -- New York, N.Y. -- Science. 2011 Aug 19;333(6045):988-93. doi: 10.1126/science.1201609. Epub 2011 Jul 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Agriculture Forest Service, Newtown Square, PA 19073, USA. ypan@fs.fed.us〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764754" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Biomass ; Carbon/analysis ; Carbon Dioxide/analysis ; *Carbon Sequestration ; Climate Change ; Conservation of Natural Resources ; *Ecosystem ; *Trees ; Tropical Climate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-11-26
    Description: [1]  Canada's forests play an important role in the global carbon cycle through carbon (C) storage and C exchange with the atmosphere. While estimates of aboveground biomass have been improving, little is known about belowground C storage in root biomass. Here we estimated the contribution of roots to the C budget of Canada's 2.3x10 6 km 2 managed forests from 1990 to 2008 using the empirical modelling approach of the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) driven by detailed forestry datasets from the National Forest C Monitoring, Accounting and Reporting System (NFCMARS). The estimated average net primary production ( NPP ) during this period was 809 Tg C yr -1 (352 g C m 2 yr -1 ) with root growth and replacement of turnover contributing 39.8 % of NPP . [2]  Average heterotrophic respiration ( R h ) was 738 Tg C yr -1 (321 g C m -2  yr -1 ), which resulted in a net ecosystem production ( NEP ) value of 31 g C m -2  yr -1 (71 Tg C yr -1 ), and on average only 8.7% of NPP remained in the system as NEP . Estimated average root C stocks were 2.38 Pg (1235 g C m -2 ), mostly in coarse roots (≥ 5 mm diameter), and had an average root to shoot percentage (belowground to aboveground biomass) of 25.6%. Detailed monitoring of C exchange between forests and the atmosphere and an improved understanding of the belowground processes and their response to environmental changes are needed to improve our understanding of the terrestrial C budget
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 70 (1993), S. 39-53 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The circumpolar boreal biomes coverca. 2 109 ha of the northern hemisphere and containca. 800 Pg C in biomass, detritus, soil, and peat C pools. Current estimates indicate that the biomes are presently a net C sink of 0.54 Pg C yr−1. Biomass, detritus and soil of forest ecosystems (includingca. 419 Pg peat) containca. 709 Pg C and sequester an estimated 0.7 Pg C yr−1. Tundra and polar regions store 60–100 Pg C and may recently have become a net source of 0.17 Pg C yr−1. Forest product C pools, including landfill C derived from forest biomass, store less than 3 Pg C but increase by 0.06 Pg C yr−1. The mechanisms responsible for the present boreal forest net sink are believed to be continuing responses to past changes in the environment, notably recovery from the little ice-age, changes in forest disturbance regimes, and in some regions, nutrient inputs from air pollution. Even in the absence of climate change, the C sink strength will likely be reduced and the biome could switch to a C source. The transient response of terrestrial C storage to climate change over the next century will likely be accompanied by large C exchanges with the atmosphere, although the long-term (equilibrium) changes in terrestrial C storage in future vegetation complexes remains uncertain. This transient response results from the interaction of many (often non-linear) processes whose impacts on future C cycles remain poorly quantified. Only a small part of the boreal biome is directly affected by forest management and options for mitigating climate change impacts on C storage are therefore limited but the potential for accelerating the atmospheric C release are high.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 82 (1995), S. 321-331 
    ISSN: 1573-2932
    Keywords: carbon budget ; boreal forest ; CBM-CFS ; Canada ; disturbance ; future projections
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The Canadian boreal forest covers over 300 Mha of land area. Its dynamics are largely influenced by fires and insect-induced stand mortality and to a much lesser extent by forest management. This paper analyses six scenarios of future (1990–2040) carbon (C) budgets of the Canadian boreal forest, each based on different assumptions about natural disturbances, rates of reforestation of disturbed land, and conversion of non-stocked to productive forest stands. The objective of these scenarios is to explore the range of responses to different management options. The results indicate an overall inertia of a system whose dynamics are strongly influenced by a recent 20-year period (1970–1989) of large-scale forest disturbances by fire and insects. The 50-year C budget of the six scenarios ranges from an estimated net source of 1.4 Pg C to a net sink of 9.2 Pg C. These estimates indicate the range of response to the management of the Canadian boreal forest. Although a full-scale implementation of the management activities examined here is not likely given ecological and economic realities in the Canadian boreal forest, the analyses explore the relative merits of reducing forest disturbance rates, regeneration delays, and the area of non-stocked forest land.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-01-29
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-05-07
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-08-01
    Description: Most forest ecosystem carbon (C) models are designed to estimate total ecosystem C including soil C stocks and fluxes. Stratification by tree species is often used in these models to reduce uncertainty, but the potential of stratification by soil taxon has received little attention. This potential can be realized only if meaningful modeling strata are identified. Therefore, the objectives of this study were: (a) to distinguish strata of soil C modeling cateogories (SCMC) on the basis of soil C stocks of taxonomic categories that are characterized by similar pedogenic processes important to C dynamics, and (b) to review the literature to test the robustness of the SCMC scheme. Carbon stocks of 1383 forest soil pedons were analyzed by multiple means comparisons for soil orders and by orthogonal contrasts between pedologically related sets of subgroups within soil orders. Eleven SCMCs were distinguished with mean total C stocks varying from 325 ± 37.2 t ha-1 for the gleyed Cryosol SCMC to 94 ± 3.9 t ha-1 for the Brunisolic Gray Luvisol SCMC. A review of the literature relevant to each SCMC demonstrated that there is a scientific basis for using these strata to model forest soil C dynamics. Key words: Forest soil, carbon, modeling, pedology, genesis
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...