ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-23
    Description: The Skaergaard intrusion, Greenland, is the type locality for Skaergaard-type mineralizations. Mineralization levels are perfectly concordant with igneous layering, up to 5 m thick, internally fractionated, and contain crystallized sulphide droplets and precious metal alloys, sulphides, arsenides and telluride. Immiscible Cu-rich sulphide droplets, formed in a mush zone below the roof, scavenged precious metals. They were subsequently dissolved and transported to the floor in late-formed, immiscible, Fe-rich mush melts. Mineralized stratigraphic intervals of floor gabbro formed in ‘proto-macrolayers‘, owing to local sulphide saturation in melt concentrated between floating plagioclase and sinking clinopyroxene. The floor mineralization is divided into four stratigraphic sections. Formation of the Lower Platinum Group Element Mineralization (LPGEM) involved: (1) crystallization of the bulk liquid liquidus paragenesis and in situ fractionation; (2) sulphide saturation and formation of sulphide droplets in melt in the upper part of ‘proto-macrolayers‘. After further in situ fractionation, the following steps occurred: (3) the onset of silicate–silicate immiscibility and the consequent loss of buoyant and immiscible Si-rich melt; (4) dissolution of unprotected droplets of sulphide melt present in the Fe-rich mush melt; (5) compaction-driven upwards loss of residual mush melt enriched in, for example, Au. The LPGEM preserves upward increasing bulk Pd/Pt (~6–13) owing to a continued supply of PGE and Au, with high Pd/Pt. The further development of the LPGEM ceased as the supply of precious metals to the floor waned. The Upper PGE Mineralization (UPGEM) subsequently formed from precious metals recycled in the floor. The UPGEM is characterized by increasing Au substitution in PGE phases, and a decrease in total PGE and Pd/Pt owing to upward fractionation in migrating mush melts and exhaustion of Pd and Pt. An upper Au-rich mineralization level (UAuM) was caused by late remobilization of Au and deposition on grain boundaries in fully crystallized gabbro. Cu concentrations (~150 ppm) are not correlated with PGE and Au. Repeated Cu mineralization levels (CuM), attaining 〉1000 ppm, occur above the Au levels, caused by local mush layer sulphide saturation. PGE, Au and Cu distributions in the floor mineralization reflect sub-liquidus, but supra-solidus, processes and reactions in mushes at the roof, wall and floor. Constraints provided by a new model for the mineralization provide the basis for re-evaluation of the solidification processes in the Skaergaard intrusion. We have identified the importance of extensive in situ fractionation and intrusion-wide elemental redistributions in immiscible Fe- and Si-rich silicate melts. Our model characterizes the floor cumulates as bulk liquid orthocumulates containing an upwards-increasing proportion crystallized from Fe-rich, immiscible mush melt. The roof-rocks are complementary to the floor, with downwards increasing proportions crystallized from the conjugate Si-rich melt. Petrographic observations and the relative timing of crystallization support the hypothesis that crystallization was restricted to marginal mush zones. Bulk melt remaining in the magma chamber evolved not, as generally assumed, as a result of loss of crystals grown from the bulk melt, but as the consequence of mixing with recycled and evolved melt expelled from the mush by compaction. Redistribution of Fe in immiscible melts may be common to mafic intrusions and puts into question the validity of petrogenetic modelling of bulk liquids in mafic intrusions based only on consideration of floor cumulates.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-13
    Description: The Fanshan intrusion in the North China Craton (NCC) is concentrically zoned with syenite in the core (Unit 1), surrounded by ultramafic rocks (clinopyroxenite and biotite clinopyroxenite; Unit 2), and an outer rim of garnet-rich clinopyroxenite and orthoclase clinopyroxenite and syenite (Unit 3). The intrusive rocks are composed of variable amounts of Ca-rich augite, biotite, orthoclase, melanite, garnet, magnetite and apatite, with minor primary calcite. Monomineralic apatite rocks, nelsonite and glimmerite exclusively occur in Unit 2. Geochemically, the Fanshan rocks are highly enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE), moderately depleted in high field strength elements (HFSE), and have a limited range of Sr–Nd–O isotopic compositions. The similar mineralogy, mineral compositions, and trace element characteristics of the three units suggest that all the rocks are co-magmatic. The parental magma is ultrapotassic and is akin to kamafugite. Very low-degree partial melting of metasomatized lithospheric mantle best explains the geochemistry and petrogenesis of the parental magmas of the Fanshan intrusion. We propose that the mantle source may have been metasomatized by a hydrous carbonate-bearing melt, which has imprinted the enriched Sr–Nd isotopic signature and incompatible element enrichment with conspicuous negative Nb–Ta–Zr–Hf–Ti anomalies and LREE enrichments. The mantle source enrichment may be correlated with oceanic sediment recycling during southward subduction of the Paleo-Asian oceanic plate during the Carboniferous and Permian. We propose that crystal settling and mechanical sorting combined with repeated primitive magma replenishment and mixing with previously fractionated magma is the predominant process responsible for the formation of the apatite ores.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-13
    Description: Here we report the results of an experimental study aimed at testing the existence of stable, super-liquidus immiscibility between silica- and Fe-rich multicomponent melts at temperatures above 1100 °C. Four pairs of the potentially immiscible compositions were tested in a 1-atm gas-mixing furnace (Ar/H 2 -CO 2 gas mixture) at 1150 and 1200 °C and at the oxygen fugacity corresponding to that of the QFM buffer. Pre-synthesized pairs of the silica-rich and Fe-rich starting compositions were loaded in Pt wire loops, fused separately at 1300 °C, then brought in contact and kept at constant experimental temperature for more than 24 h. Three pairs of compositions out of four used in this study did not mix. Some temperature-dependent chemical re-equilibration was observed in the Fe-rich liquid phase but, in the cases of immiscibility, the two liquids remained compositionally distinct and showed sharp compositional gradients at contacts. One pair of liquids crystallized some tridymite, whereas the other compositions were clearly above the liquidus. Overall, the results of the experiments are in good agreement with the earlier centrifuge study and confirm the existence of stable, super-liquidus immiscibility in some Fe-rich basaltic-andesitic compositions at temperatures up to 1200 °C.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-19
    Description: The presence of Fe- and Si-rich liquids found as melt inclusions in apatite and olivine in the Upper Zone of the Skaergaard intrusion, East Greenland, demonstrates the occurrence of liquid immiscibility in the late-stage evolution of tholeiitic magmas in a plutonic setting. However, it remains unclear at which stage of crystallization unmixing began. To constrain the onset and the petrological importance of liquid immiscibility in the Skaergaard and tholeiitic magmas in general, we have studied crystallized melt inclusions entrapped in early primocryst plagioclase. Such melt inclusions become abundant from the top of the Lower Zone and upwards in the Layered Series, in primocryst plagioclase of composition An 54–26 . The daughter phase assemblage is the same in all the inclusions, although the modal proportions of the daughter phases are highly variable: plagioclase (42–59%), clinopyroxene (28–41%), ilmenite (4–9%), magnetite (3–10%), apatite (1–9%) and accessory phases (〈 1%). Accordingly, the bulk compositions of reheated and homogenized melt inclusions show large variations in SiO 2 (40–54 wt %), FeO t (7–23 wt %), P 2 O 5 (0–1·9 wt %) and K 2 O (0–2·8 wt %), and have variable CaO/Al 2 O 3 ratios. These variations are best explained by trapping of varying proportions of immiscible iron- and silica-rich melts and demonstrate that liquid immiscibility started in the upper part of the Lower Zone. We conclude that a significant part of the Skaergaard intrusion crystallized from an emulsion of Fe- and Si-rich immiscible melts. The heterogeneous trapping of a mixture of Fe- and Si-rich immiscible liquids in primocryst plagioclase indicates that the dispersed droplets in the Lower and Middle Zones were smaller than the size of the inclusion (〈 500 µm). In the Upper Zone, most of the inclusions in apatite are composed of the conjugate end-member liquids, indicating a larger size for the dispersed droplets. Metre-sized pods and layers of melanogranophyre in the upper part of the intrusion are believed to represent pooled bodies of the immiscible Si-rich liquid. Differentiation of an emulsified magma must be considered in petrogenetic models for the Skaergaard intrusion.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-24
    Description: The Upper Critical Zone (UCZ) of the Bushveld Igneous Complex displays spectacular layering in the form of cyclic units comprising a basal chromitite layer overlain by a sequence of silicate cumulates in the order, from bottom to top, pyroxenite–norite–anorthosite. Electron microprobe and laser ablation inductively coupled plasma mass spectrometry analyses of chromite and silicate minerals in layers between the UG2 chromitite and the Merensky Reef reveal variations in major and trace element compositions that defy explanation with existing models of cumulate mineral–melt evolution. The anomalous features are best developed at sharp contacts of chromitite with adjacent anorthosite and pyroxenite cumulates. Here, chromite compositions change abruptly from high and constant Mg/(Mg + Fe 2+ ) and Fe 2+ /Fe 3+ ratios in chromitite layers to variable and generally lower values in chromite disseminated in silicate layers. Furthermore, the composition of disseminated chromites varies depending on the host silicate assemblage; for example, in Ti, V and Zn contents. Importantly, the abrupt change in chromite composition across the chromitite–silicate layer contacts is independent of the thickness of the chromitite layer and the estimated mass proportions of chromite to intercumulus liquid. Chemical variations in plagioclase are also abrupt and some are hard to reconcile with conventional models of re-equilibration with intercumulus liquid. Among those features is the decoupling of alkalis from other incompatible lithophile elements. In comparison with cumulus plagioclase, intercumulus poikilitic plagioclase in chromitite layers is enriched in rare earth elements but strongly depleted in equally incompatible Li, K and Rb. Strong alkali depletion is also observed in intercumulus pyroxene from ultramafic cumulates and chromitite layers. To explain these features, we propose a new model of post-cumulus recrystallization, which intensifies the modal layering in the crystal–liquid mush, producing the observed sequence of nearly monomineralic layers of chromitite, pyroxenite and anorthosite that define the cyclic units. The crucial element of this model is the establishment of redox potential gradients at contacts between chromite-rich cumulates and adjacent silicate layers owing to peritectic reactions between the crystals and intercumulus melt. Because basaltic melts are ionic electrolytes with Na + as the main charge carrier, the redox potential gradient induces electrochemical migration of Na + and other alkali ions. Selective mobility of alkalis can explain the enigmatic features of plagioclase composition in the cyclic units. Sodium migration is expected to cause remelting of previously formed cumulates and major changes in modal mineral proportions, which may eventually result in the formation of sharply divided monomineralic layers. The observed variations in ferric/ferrous iron ratios in chromite from the cyclic units and Fe distribution in plagioclase imply a redox gradient of the order of 0·9 log-units f O 2 , equivalent to a potential gradient of 60 mV. Preliminary estimates suggest that the resulting electrochemical flux of Na + ions is sufficient to mobilize about one-third of the total Na content of a 1 m thick mush layer within 10 years. The proposed electrochemical effect of post-cumulus crystallization is enhanced by the presence of cumulus chromite but, in principle, it can operate in any type of cumulates in which ferrous and ferric iron species are distributed unequally between crystalline and liquid phases.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-05-29
    Description: A scientific drilling project in the Bushveld Igneous Complex in South Africa has been proposed to contribute to the following scientific topics of the International Continental Drilling Program (ICDP): large igneous provinces and mantle plumes, natural resources, volcanic systems and thermal regimes, and deep life. An interdisciplinary team of researchers from eight countries met in Johannesburg to exchange ideas about the scientific objectives and a drilling strategy to achieve them. The workshop identified drilling targets in each of the three main lobes of the Bushveld Complex, which will integrate existing drill cores with new boreholes to establish permanently curated and accessible reference profiles of the Bushveld Complex. Coordinated studies of this material will address fundamental questions related to the origin and evolution of parental Bushveld magma(s), the magma chamber processes that caused layering and ore formation, and the role of crust vs. mantle in the genesis of Bushveld granites and felsic volcanic units. Other objectives are to study geophysical and geodynamic aspects of the Bushveld intrusion, including crustal stresses and thermal gradient, and to determine the nature of deep groundwater systems and the biology of subsurface microbial communities.
    Print ISSN: 1816-8957
    Electronic ISSN: 1816-3459
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1997-02-01
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-10-08
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-11-01
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-12-17
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...