ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Series available for loan
    Series available for loan
    Rockville, Md. : U.S. Department of Commerce, National Oceanic and Atmospheric Administration
    Associated volumes
    Call number: SR 90.0947(83-14)
    In: NOAA technical report
    Type of Medium: Series available for loan
    Pages: II, 30 S.
    Series Statement: NOAA Technical Report : NOS 83-14
    Language: English
    Location: Magazine - must be ordered
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics of the Earth and Planetary Interiors 17 (1978), S. 265-280 
    ISSN: 0031-9201
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of geodesy 72 (1998), S. 411-420 
    ISSN: 1432-1394
    Keywords: Key words. Downward continuation ; Helmert's gravity ; Poisson integral ; Disturbing potential ; Gravity disturbance ; Gravity anomaly
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract. This research deals with some theoretical and numerical problems of the downward continuation of mean Helmert gravity disturbances. We prove that the downward continuation of the disturbing potential is much smoother, as well as two orders of magnitude smaller than that of the gravity anomaly, and we give the expression in spectral form for calculating the disturbing potential term. Numerical results show that for calculating truncation errors the first 180∘ of a global potential model suffice. We also discuss the theoretical convergence problem of the iterative scheme. We prove that the 5′×5′ mean iterative scheme is convergent and the convergence speed depends on the topographic height; for Canada, to achieve an accuracy of 0.01 mGal, at most 80 iterations are needed. The comparison of the “mean” and “point” schemes shows that the mean scheme should give a more reasonable and reliable solution, while the point scheme brings a large error to the solution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1394
    Keywords: Key words. Precise geoid determinations ; Gravity anomaly ; Geodetic boundary value problem ; Downward continuation of gravity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract.  The definition of the mean Helmert anomaly is reviewed and the theoretically correct procedure for computing this quantity on the Earth's surface and on the Helmert co-geoid is suggested. This includes a discussion of the role of the direct topographical and atmospherical effects, primary and secondary indirect topographical and atmospherical effects, ellipsoidal corrections to the gravity anomaly, its downward continuation and other effects. For the rigorous derivations it was found necessary to treat the gravity anomaly systematically as a point function, defined by means of the fundamental gravimetric equation. It is this treatment that allows one to formulate the corrections necessary for computing the `one-centimetre geoid'. Compared to the standard treatment, it is shown that a `correction for the quasigeoid-to-geoid separation', amounting to about 3 cm for our area of interest, has to be considered. It is also shown that the `secondary indirect effect' has to be evaluated at the topography rather than at the geoid level. This results in another difference of the order of several centimetres in the area of interest. An approach is then proposed for determining the mean Helmert anomalies from gravity data observed on the Earth's surface. This approach is based on the widely-held belief that complete Bouguer anomalies are generally fairly smooth and thus particularly useful for interpolation, approximation and averaging. Numerical results from the Canadian Rocky Mountains for all the corrections as well as the downward continuation are shown.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1394
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract In this paper we investigate the behaviour of Newton's kernel in the integration for topographical effects needed for solving the boundary value problem of geodesy. We follow the standard procedure and develop the kernel into a Taylor series in height and look at the convergence of this series when the integral is evaluated numerically on a geographical grid, as is always the case in practice. We show that the Taylor series converges very rapidly for the integration over the ”distant zone”, i.e., the zone well removed from the point of interest. We also show that the series diverges in the vicinity of the point of interest when the grid becomes too dense. Generally, when the grid step is smaller than either the height of the point of interest, or the difference between its height and those of the neighbouring points. Thus we claim that the Taylor series version of Newton's kernel cannot be used for evaluating topographical effects on too dense a topographical mesh.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of geodesy 71 (1996), S. 21-34 
    ISSN: 1432-1394
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract . The aim of this contribution is to show that mean Helmert's gravity anomalies obtained at the earth surface on a grid of a `reasonable' step can be transferred to corresponding mean Helmert's anomalies on the geoid. To demonstrate this, we take the by mean Helmert's anomalies from a very rugged region, the south-western corner of Canada which contains the two main chains of the Canadian Rocky Mountains, and formulate the problem of downward continuation of Helmert's anomalies for this region. This can be done exactly because Helmert's disturbing potential is harmonic everywhere outside the geoid, therefore even within the topography. Then we solve the problem numerically by transforming the Poisson integral to a system of 53,856 linear algebraic equations. Since the matrix of this system is well conditioned, there is no theoretical obstacle to the solution. The correctness of the solution is then checked by back substitution and by evaluating the contribution of the downward continuation term to Helmert's co-geoid. This contribution comes out positive for all the points. We thus claim that the determination of the downward continuation of mean Helmert's gravity anomalies on a grid of a `reasonable' step is a well posed problem with a unique solution and can be done routinely to any accuracy desired in the geoid computaion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of geodesy 73 (1999), S. 58-66 
    ISSN: 1432-1394
    Keywords: Key words. Gravimetric inverse problem ; Truncation ; Geoid interpretation ; Point mass ; Dimple onset
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract. The truncated geoid, defined by the truncated Stokes' integral transform, an integral convolution of gravity anomalies with the Stokes' function on a spherical cap, is often used as a mathematical tool in geoid computations via Stokes' integral to overcome computational difficulties, particularly the need to integrate over the entire boundary spheroid. The objective of this paper is to demonstrate that the truncated geoid does, besides having mathematical applications, have physical interpretation, and thus may be used in gravity inversion. A very simple model of one point-mass anomaly is chosen and a method for inverting its synthetic gravity field with the use of the truncated geoid is presented. The method of inverting the synthetic field generated by one point-mass anomaly has become fundamental for the authors' inversion studies for sets of point-mass anomalies, which are published in a separate paper. More general applications are currently under investigation. Since an inversion technique for physically meaningful mass distributions based on the truncated geoid has not yet been developed, this work is not related to any of the existing gravity inversion techniques. The inversion for one point mass is based on the onset of the so-called dimple event, which occurs in the sequence of surfaces (or profiles) of the first derivative of the truncated geoid with respect to the truncation parameter (radius of the integration cap), its only free parameter. Computing the truncated geoid at various values of the truncation parameter may be understood as spatial filtering of surface gravity data, a type of weighted spherical windowing method. Studying the change of the truncated geoid represented by its first derivative may be understood as a data enhancement method. The instant of the dimple onset is practically independent of the mass of the point anomaly and linearly dependent on its depth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of geodesy 69 (1995), S. 191-191 
    ISSN: 1432-1394
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1394
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract In this paper we investigate the behaviour of Newton's kernel in the integration for topographical effects needed for solving the boundary value problem of geodesy. We follow the standard procedure and develop the kernel into a Taylor series in height and look at the convergence of this series when the integral is evaluated numerically on a geographical grid, as is always the case in practice. We show that the Taylor series converges very rapidly for the integration over the "distant zone", i.e., the zone well removed from the point of interest. We also show that the series diverges in the vicinity of the point of interest when the grid becomes too dense. Generally, when the grid step is smaller than either the height of the point of interest, or the difference between its height and those of the neighbouring points. Thus we claim that the Taylor series version of Newton's kernel cannot be used for evaluating topographical effects on too dense a topographical mesh.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of geodesy 72 (1998), S. 684-697 
    ISSN: 1432-1394
    Keywords: Key words. Geoid determination ; Modified kernels ; Error propagation ; High-pass filtering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract. When regional gravity data are used to compute a gravimetric geoid in conjunction with a geopotential model, it is sometimes implied that the terrestrial gravity data correct any erroneous wavelengths present in the geopotential model. This assertion is investigated. The propagation of errors from the low-frequency terrestrial gravity field into the geoid is derived for the spherical Stokes integral, the spheroidal Stokes integral and the Molodensky-modified spheroidal Stokes integral. It is shown that error-free terrestrial gravity data, if used in a spherical cap of limited extent, cannot completely correct the geopotential model. Using a standard norm, it is shown that the spheroidal and Molodensky-modified integration kernels offer a preferable approach. This is because they can filter out a large amount of the low-frequency errors expected to exist in terrestrial gravity anomalies and thus rely more on the low-frequency geopotential model, which currently offers the best source of this information.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...