ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2013-08-13
    Description: The space–time distribution of coseismic slip of the 2011 February 21, M w 6.2, Christchurch earthquake, New Zealand, is explored, differently from all previous studies, through a joint inversion of geodetic and strong-motion data. The geodetic data consist of both global position system (GPS), from campaign and continuous stations, and synthetic aperture radar (SAR) interferograms from two ascending satellite tracks. The strong motion data consist of 10 stations located in the Canterbury plains, these stations offering a good azimuthal coverage of the event. The kinematic rupture model for the analysed event was obtained using the parametrization and non-linear inversion scheme proposed by Delouis et al. In particular, for any subfault we explore for the local source time function (local slip history), slip direction and rupture onset time. The geometry of the fault plane used for the kinematic inversion is inferred from the analysis of the geodetic data. To validate our results we perform a resolution study for both the single and complete data sets, and an errors analysis of our final kinematic rupture model. Considering the complexity highlighted by superficial deformation data, we adopted a fault model consisting of two partially overlapping segments, with dimensions 15  x 11 and 7  x 7 km 2 , corresponding to different faulting types. This two-fault model, instead of single-fault model, is needed to reconstruct the complex shape of the superficial deformation data. The total seismic moment resulting from the joint inversion is 3.0  x 1025 dyne · cm ( M w  = 6.2) with an average rupture velocity of 2.0 km s –1 .
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...