ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2014-07-17
    Description: Two composite dykes containing abundant mafic enclaves within a felsic host crop out in the Maladeta Plutonic Complex, Pyrenees, Spain. Field, petrographic and geochemical criteria reveal mixing between gabbroic and aplitic magmas, giving rise to a variety of hybrid compositions. The rocks contain spongy plagioclase, quartz ocelli and amphibole–biotite clots that are interpreted as early crystals destabilized by reaction with the hybrid melts. Spongy plagioclase and quartz ocelli were mechanically transferred from the felsic to the mafic magma, whereas amphibole–biotite clots are former pyroxene crystals from the mafic magma. Multivariate statistics (principal component analysis) have been used to examine variations in the mineral trace element compositions, which are best explained by the crystal transfer process. This study shows that crystal transfer represents a mixing mechanism that can overcome some of the physical limitations of interaction between rheologically contrasting magmas and explain deviations of the hybrid compositions from the theoretical mixed chemical composition. In particular, hybrid whole-rock compositions show non-linear correlations in inter-element variation diagrams for elements that are enriched or depleted in preferentially transferred crystals. This effect has been quantified by extending magma mixing modelling to include crystal transfer. The composite dykes studied could be regarded as scale models of the behaviour of larger-scale magmatic systems, so this investigation has important implications for interpreting the petrogenesis of igneous suites by magma mixing.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-04
    Description: Pyroclastic density currents (PDCs) are hot flowing mixtures of gas and pyroclasts that can cause widespread loss of life and structural damage around the erupting volcano. Hazard assessments that include quantification of aleatory and epistemic uncertainty are a necessary step toward calculating volcanic risk of PDCs in an accurate and complete manner. We develop a three-stage procedure to quantify such uncertainties for dense PDCs. First, the TITAN2D model is parameterized to simulate the PDC phenomenology at the target volcano. Second, TITAN2D is coupled with Polynomial Chaos Quadrature to propagate aleatory uncertainty from model parameters to hazard intensity measures (flow depth and speed). Third, the TITAN2D-PCQ analysis is merged with the Bayesian Event Tree for Volcanic Hazard to include other volcano-specific aleatory uncertainty and estimates of epistemic uncertainty. A comprehensive collection of probabilistic hazard curves and maps for flow depth and speed around the volcano is obtained through this methodology and its application is illustrated at Somma-Vesuvius (Italy). Our results indicate that, given an eruption from the current central crater, exceedance probabilities are around 30% (aleatory uncertainty only) and between 10% and 60% (aleatory and epistemic uncertainty), for flow depth = 1 m and flow speed = 2 m/s, over the first 2–3 km around the vent. Dense PDCs faster than 30 m/s may cover areas about 50 km 2 around the vent, on average, 1 every 10 eruptions. This type of probabilistic hazard assessment represents a crucial step toward quantitative volcanic risk of dense PDCs at Somma-Vesuvius and worldwide. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Pyroclastic density currents (PDCs) are gravitydriven hot mixtures of gas and volcanic particles which can propagate at high speed and cover distances up to several tens of kilometers around a given volcano. Therefore, they pose a severe hazard to the surroundings of explosive volcanoes able to produce such phenomena. Despite this threat, probabilistic volcanic hazard assessment (PVHA) of PDCs is still in an early stage of development. PVHA is rooted in the quantification of the large uncertainties (aleatory and epistemic) which characterize volcanic hazard analyses. This quantification typically requires a big dataset of hazard footprints obtained from numerical simulations of the physical process. For PDCs, numerical models range from very sophisticated (not useful for PVHA because of their very long runtimes) to very simple models (criticized because of their highly simplified physics). We present here a systematic and robust validation testing of a simple PDC model, the energy cone (EC), to unravel whether it can be applied to PVHA of PDCs. Using past PDC deposits at Somma-Vesuvius and Campi Flegrei (Italy), we assess the ability of EC to capture the values and variability in some relevant variables for hazard assessment, i.e., area of PDC invasion and maximum runout. In terms of area of invasion, the highest Jaccard coefficients range from 0.33 to 0.86 which indicates an equal or better performance compared to other volcanic mass-flow models. The p values for the observed maximum runouts vary from 0.003 to 0.44. Finally, the frequencies of PDC arrival computed from the EC are similar to those determined from the spatial distribution of past PDC deposits, with high PDC-arrival frequencies over an ∼8-km radius from the crater area at Somma-Vesuvius and around the Astroni crater at Campi Flegrei. The insights derived from our validation tests seem to indicate that the EC is a suitable candidate to compute PVHA of PDCs.
    Description: Published
    Description: 79
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Pyroclastic density currents ; Probabilistic hazard assessment ; Energy cone ; Somma-Vesuvius ; Campi Flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-10
    Description: A methodology for a comprehensive probabilistic tsunami hazard analysis is presented for the major sources of tsunamis (seismic events, landslides, and volcanic activity) and preliminarily applied in the Gulf of Naples (Italy). The methodology uses both a modular procedure to evaluate the tsunami hazard and a Bayesian analysis to include the historical information of the past tsunami events. In the urn:x-wiley:jgrc:media:jgrc23818:jgrc23818-math-0001 the submarine earthquakes and the submarine mass failures are initially identified in a gridded domain and defined by a set of parameters, producing the sea floor deformations and the corresponding initial tsunami waves. Differently volcanic tsunamis generate sea surface waves caused by pyroclastic density currents from Somma‐Vesuvius. In the urn:x-wiley:jgrc:media:jgrc23818:jgrc23818-math-0002 the tsunami waves are simulated and propagated in the deep sea by a numerical model that solves the shallow water equations. In the urn:x-wiley:jgrc:media:jgrc23818:jgrc23818-math-0003 the tsunami wave heights are estimated at the coast using the urn:x-wiley:jgrc:media:jgrc23818:jgrc23818-math-0004's amplification law. The selected tsunami intensity is the wave height. In the urn:x-wiley:jgrc:media:jgrc23818:jgrc23818-math-0005 the probabilistic tsunami analysis computes the long‐term comprehensive Bayesian probabilistic tsunami hazard analysis. In the prior analysis the probabilities from the scenarios in which the tsunami parameter overcomes the selected threshold levels are combined with the spatial, temporal, and frequency‐size probabilities of occurrence of the tsunamigenic sources. The urn:x-wiley:jgrc:media:jgrc23818:jgrc23818-math-0006 probability density functions are integrated with the urn:x-wiley:jgrc:media:jgrc23818:jgrc23818-math-0007 derived from the historical information based on past tsunami data. The urn:x-wiley:jgrc:media:jgrc23818:jgrc23818-math-0008 probability density functions are evaluated to produce the hazard curves in selected sites of the Gulf of Naples.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...