ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: SR 90.0909(83)
    In: Documents du BRGM
    Type of Medium: Series available for loan
    Pages: 670 S. + 4 Kt.-Beil.
    ISBN: 2715901046
    Series Statement: Documents du BRGM 83
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Amsterdam [u.a.] : Elsevier
    Associated volumes
    Call number: 9/G 9200
    In: Developments in volcanology
    Type of Medium: Monograph available for loan
    Pages: XXII, 635 S.
    ISBN: 0444422412
    Series Statement: Development in volcanology 1
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 376 (1995), S. 394-394 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR - In December 1994, the head of the international humanitarian association "Medecins du Monde", Dr Bernard Granjon, returned from the huge refugee camp just outside the Rwanda-Zaire border, close to the town of Goma, on the southern foot of the large, active volcano Niragongo. Granjon ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 57 (1968), S. 955-966 
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract A basaltic eruption occurring in relatively shallow waters looks drastically different from the same occurring on land. 1) Explosive phenomena are exceptionally violent (height several times the height reached in subaerial basaltic eruptions); 2) frequency of explosions very much higher (20 to 90 explosions per minute vs 0.1 to 10); 3) proportion of pyroclasts much higher too, reaching up to 99% of the total outpour; 4) pyroclasts much finer than that of land basaltic eruptions, having a granulometry similar to that of acid pyroclasts. According to the author, these differences are due to series of phreatic (steam) explosions rapidly following each violent magmatic (gas phase) event. By magmatic event, we mean actual explosion as well as the violent mashing of the upper part of the lava column; the necessary condition being an initial fragmentation of the lava enabling a comparatively large area of very high temperature material being put into contact with water to produce a first steam explosion; this phreatic explosion shatters the fragments from the magmatic explosion, letting new incandescent surfaces to be put into contact with water, thus producing a 2 d steam explosion; this brings former fragments to smaller shatters still, and so on. This process enables a very quick transformation of the heat content of a given volume of lava into kinetic energy, explaining the specific characteristics observed, as well as their absence when only quiet effusive flows (or lava lake) occurs under-water, where no initial magmatic explosion happens to expose large enough area of high temperature lava.
    Abstract: Résumé Survenant à relativement faible profondeur d'eau, une éruption basaltique sous-marine est caractéristiquement différente d'une éruption de même nature se produisant à l'air libre: 1. les phénomènes explosifs y sont exceptionnellement violents (hauteur de projection valant plusieurs fois celles des explosions basaltiques subaériennes); 2. leur fréquence est beaucoup plus élevée (20 à 90 explosions par minute contre 0,1 à 10); S. la proportion de produits pyroclastiques est beaucoup plus élevée, celle des coulées se trouvant réduite à moins d'un pour cent parfois; 4. la granulométrie des produits pyroclastiques est beaucoup plus fine, semblable à celle des pyroclastites acides. Ces différences s'expliquent, selon l'auteur, par des séries d'explosions phréatiques, eau de mer brusquement vaporisée, succédant rapidement à chaque manifestation explosive magmatique; par manifestation explosive l'on entend explosion proprement dite d'une poche de gaz sous pression ou brassage violent de la surface de la colonne de lave; la condition sine qua non étant une fragmentation initiale de la lave, mettant en contact l'eau et la matière à très haute température sur une surface suffisante pour provoquer une première explosion de vapeur; cette explosion phréatique brise les fragments engendrés par l'explosion magmatique, mettant ainsi de nouvelles surfaces incandescentes au contact de l'eau et provoquant une 2ème explosion de vapeur avec nouvelle fragmentation plus poussée, et ainsi de suite jusqu'à fragmentation relativement fine. Ce processus permet une transformation très rapide de l'énergie calorifique contenue dans la lave en énergie cinétique. Ceci explique les caractéristiques très particulières observées ainsi que l'absence de ces caractéristiques lorsque les manifestations éruptives sont de type effusif (coulées ou lac de lave) où il n'y a pas de fragmentation explosive initiale.
    Notes: Zusammenfassung Eine Basalteruption in verhältnismäßig flachem Wasser unterscheidet sich drastisch von einer subaerischen Eruption. 1. Die Explosionsphänomene sind ausgesprochen heftig (Höhe erreicht das Vielfache der eines subaerischen Ausbruchs). 2. Die Explosionshäufigkeit ist sehr viel größer (20–90 Explosionen pro Mi-nute gegenüber 0,1–10). 3. Der Anteil von Pyroklasten ist ebenfalls viel höher, bis zu 99% des Gesamtausstoßes. 4. Die Pyroklasten sind viel feiner als die von Landeruptionen, sie haben eine Korngrößenverteilung ähnlich der von sauren Pyroklasten. Nach Ansicht des Verfassers beruhen die Unterschiede auf einer Reihe von phreatischen Explosionen, die sehr schnell auf jedes heftige magmatische Ereignis folgen. Unter magmatischem Ereignis versteht der Verfasser sowohl tatsächliche Explosionen wie heftiges Zerdrücken des oberen Teils der Lavasäule; die notwendige Bedingung ist dabei eine anfängliche Fragmentation der Lava, wodurch eine vergleichsweise große Fläche von sehr heißem Material in Kontakt mit Wasser gebracht und eine erste Dampfexplosion ausgelöst wird; diese phreatische Explosion zertrümmert die Fragmente der magmatischen Explosion, wodurch neue glühende Oberflächen mit Wasser in Berührung kommen und eine zweite Dampfexplosion auslösen. Das reduziert die ehemaligen Fragmente zu noch kleineren Trümmerstücken, usw. Dieser Prozeß ermöglicht eine sehr schnelle Umsetzung des Wärmegehaltes eines gegebenen Lavavolumens in kinetische Energie und erklärt die spezifischen Eigenarten, die beobachtet wurden, wie auch deren Fehlen bei nur stillen effusiven Lavaströmen (oder Lavaseen) wo die magmatische Initialexplosion fehlt, die eine ausreichend große Fläche sehr heißer Lava freisetzt.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 61 (1972), S. 470-480 
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract Hyoclastites mainly result from underwater comminution of molten basalts initially explosively erupted out of the sea-floor and instantaneously pulverized by closely succeeding phreatic explosion (s). Many sea-mounts probably never were the alleged volcanic islands, later sea-level eroded into truncated cones and eventually drowned several km down, they are claimed to be. They are here considered as submarine polygenic volcanoes, the shape of which is congenital. Their building up probably started by accumulation of numberless flows of basalt, quietly poured out from a long-lived central vent; when this lava-volcano's crater, so progressively carried higher and higher, reached depths where explosive phenomena became possible because of lowered hydrostatic pressure, magmatic explosions occurred due to violent release of primitively dissolved (or combined) gases. Shattering of lava, 1∘) increases by several orders of magnitude lava's surface to volume ratios, so allowing huge quantities of super-heated steam to be engendered; 2∘) this super-heated steam trapped below the lava-lumps, as well as in their numberless holes, immediately explodes and comminutes the primary lavalumps; 3∘) so other super-heated steam is produced and further steam explosions are resumed in confined room until almost all the primitive heat content of the magma is transformed into kinetic energy and the lava is comminuted into glassy, ashy, hyaloclastites. This process also works above fissural eruptions. The difference is that fissural volcanoes, contrarily to large central ones, are usually monogenic (i. e. delivering one eruption only through the same vent instead of numberless ones for polygenic volcanoes). Linear effusive eruptions also produce quietly flowing basaltic flows but — because being monogenic — they cannot build up big, and eventually steep, reliefs as polygenic volcanoes do. When not poured over steep slopes where pillowlavas develop, submarine flows are characterized by 1∘) the lack of any scoriaceous, more or less thick, upper part (or jacket), and 2∘) a regular pavingstone-like surface, each polygon of which being the upper face of short prisms similar to ordinary columnar prismation, but one or two orders of magnitude shorter. As for central volcanoes, explosive activity along submarine fissures produces huge quantities of hyaloclastites, but these cannot be heaped up into steep ridges, as happens for subglacial eruptions, because sea-currents spread them far and wide.
    Abstract: Résumé Les hyaloclastites (palagonites) sont formées essentiellement par la fragmentation en milieu aqueux des lambeaux de lave lancés par explosions volcaniques sous-marines (ou sous-lacustres ou sous-glaciaires). Cette fragmentation résulte de l'explosion de la vapeur prisonnière dans et sous les dits lambeaux. Beaucoup de guyots (sea-mounts) n'ont probablement jamais été, comme on le croit généralement, des îles volcaniques ultérieurement tronquées par érosion et englouties. Nous sommes convaincus qu'une forte proportion de guyots sont des volcans sous-marins, faits de coulées interstratifiées avec des hyaloclastites, et que leur forme tronconique est congénitale. Le processus de formation des hyaloclastites que nous décrivons rend compte également des montagnes tabulaires et des crêtes dentelées, constituées de palagonites, caractéristiques du volcanisme sous-glaciaire d'Islande. Les coulées subaquatiques subhorizontales offrent une surface polygonale de « basaltes en pravés ».
    Notes: Zusmmenfassung Die Hyaloclastiten entstehen hauptsächlich durch submarines Zerspratzen von Lava, die bei vulkanischen Explosionen im Meer ausgeworfen wurde. Zahlreiche „sea-monts“ waren wahrscheinlich niemals vulkanische Inseln, die später abgestumpft und überschwemmt wurden, wie es allgemein angenommen wird. Wir sind überzeugt, daß ein großer Teil der Vulkane sich unter Wasser gebildet hat aus Laven, die aus einem langlebigen Zufuhrkanal gefördert wurden und die allmählich nach oben wuchsen. Die Bildungsart der Hyaloclastiten, die hier beschrieben wird, erklärt die Tafelformen und die aus Palagonit bestehenden zackigen Berggrate, die Islands Unter-Eis-Vulkanismus kennzeichnen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1970-02-01
    Print ISSN: 0036-8733
    Electronic ISSN: 1946-7087
    Topics: Biology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1977-01-01
    Print ISSN: 0364-152X
    Electronic ISSN: 1432-1009
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1994-10-01
    Print ISSN: 0377-0273
    Electronic ISSN: 1872-6097
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-11-01
    Print ISSN: 0377-0273
    Electronic ISSN: 1872-6097
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1982-03-01
    Print ISSN: 0377-0273
    Electronic ISSN: 1872-6097
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...