ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: 9783319339009 (e-book)
    Description / Table of Contents: In recent years, advanced molecular techniques in diagnostic microbiology have been revolutionizing the practice of clinical microbiology in the hospital setting. Molecular diagnostic testing in general and nucleic acid-based amplification methods in particular have been heralded as diagnostic tools for the new millennium. This third edition covers not only the most recent updates and advances, but details newly invented omic techniques, such as next generation sequencing. It is divided into two distinct volumes, with Volume 1 describing the techniques, and Volume 2 addressing their applications in the field. In addition, both volumes focus more so on the clinical relevance of the test results generated by these techniques than previous editions
    Type of Medium: 12
    Pages: 1 Online-Ressource (XIV, 541 Seiten) , Illustrationen
    Edition: Third Edition
    Edition: Online edition Springer eBook Collection. Biomedical and Life Sciences
    ISBN: 9783319339009 , 978-3-319-33900-9
    Language: English
    Note: Contents Automated Blood Cultures / Xiang Y. Han Laboratory Automation in Clinical Bacteriology / Antony Croxatto Biochemical Profile-Based Microbial Identification Systems / Safina Hafeez and Jaber Aslanzadeh Advanced Phenotypic Antimicrobial Susceptibility Testing Methods / Charles W. Stratton Rapid Microbial Antigen Tests / Sheldon Campbell and Marie L. Landry Antibody Detection: Principles and Applications / Yun F. (Wayne) Wang Procalcitonin and Other Host-Response-Based Biomarkers for Evaluation of Infection and Guidance of Antimicrobial Treatment / Philipp Schuetz, Ramon Sager, Yannick Wirz, and Beat Mueller Functional Assessment of Microbial, Viral, and Parasitic Infections Using Real-Time Cellular Analysis / Dazhi Jin, Xiao Xu, Min Zheng, Alex Mira, Brandon J. Lamarche, and Alex B. Ryder Cellular Fatty Acid-Based Microbial Identification and Antimicrobial Susceptibility Testing / Nicole Parrish and Stefan Riedel MALDI-TOF Mass Spectrometry-Based Microbial Identification and Beyond / Alexander Mellmann and Johannes Müthing Transcriptomic Techniques in Diagnostic Microbiology / Zachary E. Holcomb and Ephraim L. Tsalik The Use of Microbial Metabolites for the Diagnosis of Infectious Diseases / Mahesh J. Thalavitiya Acharige, Seena S. Koshy, and Sophia Koo Nucleic Acid Extraction and Enrichment / Jeong Hwan Shin Nonamplified Probe-Based Microbial Detection and Identification / Fann Wu, Tao Hong, and Phyllis Della-Latta Molecular Typing Techniques: State of the Art / Richard V. Goering PCR and Its Variations / Eleanor A. Powell and Michael Loeffelholz Non-PCR Amplification Techniques / Rosemary C. She, Ted E. Schutzbank, and Elizabeth M. Marlowe Real-Time and Digital PCR for Nucleic Acid Quantification / Alexander J. McAdam Direct Nucleotide Sequencing for Amplification Product Identification / Tao Hong Solid and Suspension Microarrays for Detection and Identification of Infectious Diseases / Sherry Dunbar, Janet Farhang, Shubhagata Das, Sabrina Ali, and Heng Qian Real-Time Detection of Amplification Products Through Fluorescence Quenching or Energy Transfer / Caitlin Otto and Shihai Huang PCR/Electrospray Ionization-Mass Spectrometry as an Infectious Disease Diagnostic Tool / Volkan Özenci and Kristoffer Strålin Nucleic Acid Amplicons Detected and Identified by T2 Magnetic Resonance / Jessica L. Snyder, Heather S. Lapp, Zhi-Xiang Luo, Brendan Manning, and Thomas J. Lowery Molecular Contamination and Amplification Product Inactivation / Susan Sefers and Jonathan E. Schmitz Index
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 License. The definitive version was published in Biogeosciences 16(2), (2019): 309-327, doi:10.5194/bg-16-309-2019.
    Description: The disequilibrium between 210Po activity and 210Pb activity in seawater samples was determined along the GEOTRACES GA01 transect in the North Atlantic during the GEOVIDE cruise (May–June 2014). A steady-state model was used to quantify vertical export of particulate 210Po. Vertical advection was incorporated into one version of the model using time-averaged vertical velocity, which had substantial variance. This resulted in large uncertainties for the 210Po export flux in this model, suggesting that those calculations of 210Po export fluxes should be used with great care. Despite the large uncertainties, there is no question that the deficits of 210Po in the Iberian Basin and at the Greenland Shelf have been strongly affected by vertical advection. Using the export flux of 210Po and the particulate organic carbon (POC) to 210Po ratio of total (〉 1 µm) particles, we determined the POC export fluxes along the transect. Both the magnitude and efficiency of the estimated POC export flux from the surface ocean varied spatially within our study region. Export fluxes of POC ranged from negligible to 10 mmol C m−2 d−1, with enhanced POC export in the Labrador Sea. The cruise track was characterized by overall low POC export relative to net primary production (export efficiency 〈 1 %–15 %), but relatively high export efficiencies were seen in the basins where diatoms dominated the phytoplankton community. The particularly low export efficiencies in the Iberian Basin, on the other hand, were explained by the dominance of smaller phytoplankton, such as cyanobacteria or coccolithophores. POC fluxes estimated from the 210Po∕210Pb and 234Th∕238U disequilibria agreed within a factor of 3 along the transect, with higher POC estimates generally derived from 234Th. The differences were attributed to integration timescales and the history of bloom events.
    Description: We thank the captain (Gilles Ferrand) and crew of the R/V Pourquoi Pas? and the chief scientists (Geráldine Sarthou and Pascale Lherminier) of the GEOVIDE cruise. We also thank Pierre Branellec, Floriane Desprez de Gésincourt, Michel Hamon, Catherine Kermabon, Philippe Le Bot, Stéphane Leizour, Olivier Ménage, Fabien Pérault, and Emmanuel de Saint-Léger for their technical support during the GEOVIDE expedition; Catherine Schmechtig for the GEOVIDE database management, and Phoebe Lam for providing two modified McLane in situ pumps; Frédéric Planchon, Virginie Sanial, and Catherine Jeandel for their assistance with pump deployments and particulate sample collection. The authors also thank Arnout Roukaerts, Debany Fonseca-Batista, Florian Deman, and Frank Dehairs for providing primary production data. Funding for the GEOVIDE cruise was provided by the French National Research Agency (ANR-13-BS06-0014, ANR-12-PDOC-0025-01), the French National Center for Scientific Research (CNRS-LEFE-CYBER), the LabexMER (anr-10-LABX-19), and Ifremer. Gillian Stewart and Yi Tang were supported by NSF award #OCE 1237108. The Generalitat de Catalunya also helped through its grant 2017 SGR-1588. This work is contributing to the ICTA “Unit of Excellence” (MinECo, MDM2015-0552). Maxi Castrillejo and Montserrat Roca-Marti were funded by an FPU PhD studentship (AP-2012-2901 and AP2010-2510, respectively) from the Ministerio de Educación, Cultura y Deporte of Spain. Maxi Castrillejo was also supported by the ETH Zurich Postdoctoral Fellowship Program (17-2 FEL-30), co-funded by the Marie Curie Actions for People COFUND Program. We also thank Gary Hemming (Queens College) and Troy Rasbury (Stony Brook University) for laboratory assistance with the ICP-MS analyses. Finally, we thank the associate editor and the anonymous reviewers for their helpful comments on how to improve the manuscript.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32(12), (2019): 1738-1758, doi:10.1029/2018GB005994.
    Description: Sinking particles strongly regulate the distribution of reactive chemical substances in the ocean, including particulate organic carbon and other elements (e.g., P, Cd, Mn, Cu, Co, Fe, Al, and 232Th). Yet, the sinking fluxes of trace elements have not been well described in the global ocean. The U.S. GEOTRACES campaign in the North Atlantic (GA03) offers the first data set in which the sinking flux of carbon and trace elements can be derived using four different radionuclide pairs (238U:234Th ;210Pb:210Po; 228Ra:228Th; and 234U:230Th) at stations co‐located with sediment trap fluxes for comparison. Particulate organic carbon, particulate P, and particulate Cd fluxes all decrease sharply with depth below the euphotic zone. Particulate Mn, Cu, and Co flux profiles display mixed behavior, some cases reflecting biotic remineralization, and other cases showing increased flux with depth. The latter may be related to either lateral input of lithogenic material or increased scavenging onto particles. Lastly, particulate Fe fluxes resemble fluxes of Al and 232Th, which all have increasing flux with depth, indicating a dominance of lithogenic flux at depth by resuspended sediment transported laterally to the study site. In comparing flux estimates derived using different isotope pairs, differences result from different timescales of integration and particle size fractionation effects. The range in flux estimates produced by different methods provides a robust constraint on the true removal fluxes, taking into consideration the independent uncertainties associated with each method. These estimates will be valuable targets for biogeochemical modeling and may also offer insight into particle sinking processes.
    Description: This study grew out of a synthesis workshop at the Lamont‐Doherty Earth Observatory of Columbia University in August 2016. This workshop was sponsored by the U.S. GEOTRACES Project Office (NSF 1536294) and the Ocean Carbon and Biogeochemistry (OCP) Project Office (NSF 1558412 and NASA NNX17AB17G). The U.S. National Science Foundation supported all of the analytical work on GA03. Kuanbo Zhou measured 228Th in the large size class particles (NSF 0925158 to WHOI). NSF 1061128 to Stony Brook University supported the BaRFlux project, for which Chistina Heilbrun is acknowledged for laboratory and field work. The lead author acknowledges support from a start‐up grant from the University of Southern Mississippi. Two anonymous reviewers are thanked for their constructive comments. All GEOTRACES GA03 data used in this study are accessible through the Biological and Chemical Oceanography Data Management Office (http://data.bco‐dmo.org/jg/dir/BCO/GEOTRACES/NorthAtlanticTransect/), and derived parameters are reported in the supporting information.
    Description: 2019-05-22
    Keywords: Biological carbon pump ; Trace metals ; North Atlantic ; Export ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 73 (1969), S. 4024-4026 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 73 (1969), S. 4378-4381 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 74 (1970), S. 675-677 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 74 (1970), S. 3148-3150 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 75 (1971), S. 301-307 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 75 (1971), S. 440-442 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...