ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-03-17
    Description: The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479502/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479502/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Jarrod A -- Kirkness, Ewen F -- Simakov, Oleg -- Hampson, Steven E -- Mitros, Therese -- Weinmaier, Thomas -- Rattei, Thomas -- Balasubramanian, Prakash G -- Borman, Jon -- Busam, Dana -- Disbennett, Kathryn -- Pfannkoch, Cynthia -- Sumin, Nadezhda -- Sutton, Granger G -- Viswanathan, Lakshmi Devi -- Walenz, Brian -- Goodstein, David M -- Hellsten, Uffe -- Kawashima, Takeshi -- Prochnik, Simon E -- Putnam, Nicholas H -- Shu, Shengquiang -- Blumberg, Bruce -- Dana, Catherine E -- Gee, Lydia -- Kibler, Dennis F -- Law, Lee -- Lindgens, Dirk -- Martinez, Daniel E -- Peng, Jisong -- Wigge, Philip A -- Bertulat, Bianca -- Guder, Corina -- Nakamura, Yukio -- Ozbek, Suat -- Watanabe, Hiroshi -- Khalturin, Konstantin -- Hemmrich, Georg -- Franke, Andre -- Augustin, Rene -- Fraune, Sebastian -- Hayakawa, Eisuke -- Hayakawa, Shiho -- Hirose, Mamiko -- Hwang, Jung Shan -- Ikeo, Kazuho -- Nishimiya-Fujisawa, Chiemi -- Ogura, Atshushi -- Takahashi, Toshio -- Steinmetz, Patrick R H -- Zhang, Xiaoming -- Aufschnaiter, Roland -- Eder, Marie-Kristin -- Gorny, Anne-Kathrin -- Salvenmoser, Willi -- Heimberg, Alysha M -- Wheeler, Benjamin M -- Peterson, Kevin J -- Bottger, Angelika -- Tischler, Patrick -- Wolf, Alexander -- Gojobori, Takashi -- Remington, Karin A -- Strausberg, Robert L -- Venter, J Craig -- Technau, Ulrich -- Hobmayer, Bert -- Bosch, Thomas C G -- Holstein, Thomas W -- Fujisawa, Toshitaka -- Bode, Hans R -- David, Charles N -- Rokhsar, Daniel S -- Steele, Robert E -- P 21108/Austrian Science Fund FWF/Austria -- R24 RR015088/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Mar 25;464(7288):592-6. doi: 10.1038/nature08830. Epub 2010 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20228792" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa/genetics ; Comamonadaceae/genetics ; DNA Transposable Elements/genetics ; Gene Transfer, Horizontal/genetics ; Genome/*genetics ; Genome, Bacterial/genetics ; Hydra/*genetics/microbiology/ultrastructure ; Molecular Sequence Data ; Neuromuscular Junction/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-23
    Description: Methanogenic Thermoplasmata of the novel order Methanomassiliicoccales were recently discovered in human and animal gastro-intestinal tracts (GITs). However, their distribution in other methanogenic environments has not been addressed systematically. Here, we surveyed Methanomassiliicoccales presence in wetland soils, a globally important source of methane emissions to the atmosphere, and in the GITs of different animals by PCR targeting their 16S rRNA and methyl:coenzyme M reductase (α-subunit) genes. We detected Methanomassiliicoccales in all 16 peat soils investigated, indicating their wide distribution in these habitats. Additionally, we detected their genes in various animal faeces. Methanomassiliicoccales were subdivided in two broad phylogenetic clades designated ‘environmental’ and ‘GIT’ clades based on differential, although non-exclusive, habitat preferences of their members. A well-supported cluster within the environmental clade comprised more than 80% of all wetland 16S rRNA gene sequences. Metagenome assembly from bovine rumen fluid enrichments resulted in two almost complete genomes of both Methanomassiliicoccales clades. Comparative genomics revealed that members of the environmental clade contain larger genomes and a higher number of genes encoding anti-oxidative enzymes than animal GIT clade representatives. This study highlights the wide distribution of Methanomassiliicoccales in wetlands, which suggests that they contribute to methane emissions from these climate-relevant ecosystems.
    Print ISSN: 0168-6496
    Electronic ISSN: 1574-6941
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-26
    Description: Gene loss, gain, and transfer play an important role in shaping the genomes of all organisms; however, the interplay of these processes in isolated populations, such as in obligate intracellular bacteria, is less understood. Despite a general trend towards genome reduction in these microbes, our phylogenomic analysis of the phylum Chlamydiae revealed that within the family Parachlamydiaceae, gene family expansions have had pronounced effects on gene content. We discovered that the largest gene families within the phylum are the result of rapid gene birth-and-death evolution. These large gene families are comprised of members harboring eukaryotic-like ubiquitination-related domains, such as F-box and BTB-box domains, marking the largest reservoir of these proteins found among bacteria. A heterologous type III secretion system assay suggests that these proteins function as effectors manipulating the host cell. The large disparity in copy number of members in these families between closely related organisms suggests that nonadaptive processes might contribute to the evolution of these gene families. Gene birth-and-death evolution in concert with genomic drift might represent a previously undescribed mechanism by which isolated bacterial populations diversify.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-10-26
    Description: Motivation: The rapidly growing number of available prokaryotic genome sequences requires fully automated and high-quality software solutions for their initial and re-annotation. Here we present ConsPred, a prokaryotic genome annotation framework that performs intrinsic gene predictions, homology searches, predictions of non-coding genes as well as CRISPR repeats and integrates all evidence into a consensus annotation. ConsPred achieves comprehensive, high-quality annotations based on rules and priorities, similar to decision-making in manual curation and avoids conflicting predictions. Parameters controlling the annotation process are configurable by the user. ConsPred has been used in the institutions of the authors for longer than 5 years and can easily be extended and adapted to specific needs. Summary: The ConsPred algorithm for producing a consensus from the varying scores of multiple gene prediction programs approaches manual curation in accuracy. Its rule-based approach for choosing final predictions avoids overriding previous manual curations. Availability and implementation: ConsPred is implemented in Java, Perl and Shell and is freely available under the Creative Commons license as a stand-alone in-house pipeline or as an Amazon Machine Image for cloud computing, see https://sourceforge.net/projects/conspred/ . Contact: thomas.rattei@univie.ac.at Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...