ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-07
    Description: Cell growth and proliferation are tightly linked to nutrient availability. The mechanistic target of rapamycin complex 1 (mTORC1) integrates the presence of growth factors, energy levels, glucose and amino acids to modulate metabolic status and cellular responses. mTORC1 is activated at the surface of lysosomes by the RAG GTPases and the Ragulator complex through a not fully understood mechanism monitoring amino acid availability in the lysosomal lumen and involving the vacuolar H(+)-ATPase. Here we describe the uncharacterized human member 9 of the solute carrier family 38 (SLC38A9) as a lysosomal membrane-resident protein competent in amino acid transport. Extensive functional proteomic analysis established SLC38A9 as an integral part of the Ragulator-RAG GTPases machinery. Gain of SLC38A9 function rendered cells resistant to amino acid withdrawal, whereas loss of SLC38A9 expression impaired amino-acid-induced mTORC1 activation. Thus SLC38A9 is a physical and functional component of the amino acid sensing machinery that controls the activation of mTOR.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376665/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376665/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rebsamen, Manuele -- Pochini, Lorena -- Stasyk, Taras -- de Araujo, Mariana E G -- Galluccio, Michele -- Kandasamy, Richard K -- Snijder, Berend -- Fauster, Astrid -- Rudashevskaya, Elena L -- Bruckner, Manuela -- Scorzoni, Stefania -- Filipek, Przemyslaw A -- Huber, Kilian V M -- Bigenzahn, Johannes W -- Heinz, Leonhard X -- Kraft, Claudine -- Bennett, Keiryn L -- Indiveri, Cesare -- Huber, Lukas A -- Superti-Furga, Giulio -- P 26682/Austrian Science Fund FWF/Austria -- England -- Nature. 2015 Mar 26;519(7544):477-81. doi: 10.1038/nature14107. Epub 2015 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. ; Department DiBEST (Biology, Ecology and Earth Sciences), University of Calabria, 87036 Arcavacata di Rende, Italy. ; Biocenter, Division of Cell Biology, Innsbruck Medical University, 6020 Innsbruck, Austria. ; Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25561175" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Transport Systems/*metabolism ; Amino Acids/*metabolism ; Animals ; Cell Line ; Humans ; Lysosomes/*metabolism ; Mice ; Monomeric GTP-Binding Proteins/metabolism ; Multiprotein Complexes/*metabolism ; Nucleotides/metabolism ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-20
    Description: The LAMTOR [late endosomal and lysosomal adaptor and MAPK (mitogen-activated protein kinase) and mTOR (mechanistic target of rapamycin) activator] complex, also known as "Ragulator," controls the activity of mTOR complex 1 (mTORC1) on the lysosome. The crystal structure of LAMTOR consists of two roadblock/LC7 domain–folded heterodimers wrapped and apparently held together by LAMTOR1, which assembles the complex on lysosomes. In addition, the Rag guanosine triphosphatases (GTPases) associated with the pentamer through their carboxyl-terminal domains, predefining the orientation for interaction with mTORC1. In vitro reconstitution and experiments with site-directed mutagenesis defined the physiological importance of LAMTOR1 in assembling the remaining components to ensure fidelity of mTORC1 signaling. Functional data validated the effect of two short LAMTOR1 amino acid regions in recruitment and stabilization of the Rag GTPases.
    Keywords: Biochemistry, Cell Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...