ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-12-16
    Description: Analyzing microRNAs (miRNAs) within urine extracellular vesicles (EVs) is important for realizing miRNA-based, simple, and noninvasive early disease diagnoses and timely medical checkups. However, the inherent difficulty in collecting dilute concentrations of EVs (〈0.01 volume %) from urine has hindered the development of these diagnoses and medical checkups. We propose a device composed of nanowires anchored into a microfluidic substrate. This device enables EV collections at high efficiency and in situ extractions of various miRNAs of different sequences (around 1000 types) that significantly exceed the number of species being extracted by the conventional ultracentrifugation method. The mechanical stability of nanowires anchored into substrates during buffer flow and the electrostatic collection of EVs onto the nanowires are the two key mechanisms that ensure the success of the proposed device. In addition, we use our methodology to identify urinary miRNAs that could potentially serve as biomarkers for cancer not only for urologic malignancies (bladder and prostate) but also for nonurologic ones (lung, pancreas, and liver). The present device concept will provide a foundation for work toward the long-term goal of urine-based early diagnoses and medical checkups for cancer.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Eos, Trans., Am. Geophys. Un., Hannover, Dt. Geophys. Ges. e. V., vol. 78, no. 51, pp. 597, 601, 604, pp. L15S14, (ISSN: 1340-4202)
    Publication Date: 1997
    Keywords: scientific drilling ; lake ; climate
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-08
    Description: IPS-1 differentially induces TRAIL, BCL2, BIRC3 and PRKCE in type I interferons-dependent and -independent anticancer activity Cell Death and Disease 6, e1758 (May 2015). doi:10.1038/cddis.2015.122 Authors: S Kumar, H Ingle, S Mishra, R S Mahla, A Kumar, T Kawai, S Akira, A Takaoka, A A Raut & H Kumar
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-24
    Description: Author(s): T. Kawai, M. Poetschke, Y. Miyamoto, C. G. Rocha, S. Roche, and G. Cuniberti We report a theoretical study suggesting a novel type of electronic switching effect, driven by the geometrical reconstruction of nanoscale graphene-based junctions. We considered junction structures that have alternative metastable configurations transformed by rotations of local carbon dimers. The... [Phys. Rev. B 83, 241405] Published Thu Jun 23, 2011
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-15
    Description: Activation-induced cytidine deaminase (AID) is required for both somatic hypermutation and class-switch recombination in activated B cells. AID is also known to target nonimmunoglobulin genes and introduce mutations or chromosomal translocations, eventually causing tumors. To identify as-yet-unknown AID targets, we screened early AID-induced DNA breaks by using two independent genome-wide approaches. Along with known AID targets, this screen identified a set of unique genes (SNHG3, MALAT1, BCL7A, and CUX1) and confirmed that these loci accumulated mutations as frequently as Ig locus after AID activation. Moreover, these genes share three important characteristics with the Ig gene: translocations in tumors, repetitive sequences, and the epigenetic modification of chromatin by H3K4 trimethylation in the vicinity of cleavage sites.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-04-09
    Description: The gene encoding inhibitor of kappa B (IkappaB) kinase alpha (IKKalpha; also called IKK1) was disrupted by gene targeting. IKKalpha-deficient mice died perinatally. In IKKalpha-deficient fetuses, limb outgrowth was severely impaired despite unaffected skeletal development. The epidermal cells in IKKalpha-deficient fetuses were highly proliferative with dysregulated epidermal differentiation. In the basal layer, degradation of IkappaB and nuclear localization of nuclear factor kappa B (NF-kappaB) were not observed. Thus, IKKalpha is essential for NF-kappaB activation in the limb and skin during embryogenesis. In contrast, there was no impairment of NF-kappaB activation induced by either interleukin-1 or tumor necrosis factor-alpha in IKKalpha-deficient embryonic fibroblasts and thymocytes, indicating that IKKalpha is not essential for cytokine-induced activation of NF-kappaB.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeda, K -- Takeuchi, O -- Tsujimura, T -- Itami, S -- Adachi, O -- Kawai, T -- Sanjo, H -- Yoshikawa, K -- Terada, N -- Akira, S -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):313-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195895" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cytoplasm/metabolism ; DNA-Binding Proteins/metabolism ; Epidermis/cytology/*embryology/metabolism ; Extremities/*embryology/growth & development ; Gene Expression Regulation, Developmental ; Gene Targeting ; I-kappa B Kinase ; I-kappa B Proteins ; Interleukin-1/pharmacology ; Keratinocytes/cytology/metabolism ; Limb Buds/enzymology ; Limb Deformities, Congenital/*enzymology/genetics ; Mice ; *Myogenic Regulatory Factors ; NF-kappa B/metabolism ; Nuclear Proteins/genetics ; Phosphorylation ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Skin Abnormalities/*enzymology/genetics ; Transcription Factor RelA ; Tumor Necrosis Factor-alpha/pharmacology ; Twist Transcription Factor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-02-08
    Description: Successful vaccines contain not only protective antigen(s) but also an adjuvant component that triggers innate immune activation and is necessary for their optimal immunogenicity. In the case of DNA vaccines, this consists of plasmid DNA; however, the adjuvant element(s) as well as its intra- and inter-cellular innate immune signalling pathway(s) leading to the encoded antigen-specific T- and B-cell responses remain unclear. Here we demonstrate in vivo that TANK-binding kinase 1 (TBK1), a non-canonical IkappaB kinase, mediates the adjuvant effect of DNA vaccines and is essential for its immunogenicity in mice. Plasmid-DNA-activated, TBK1-dependent signalling and the resultant type-I interferon receptor-mediated signalling was required for induction of antigen-specific B and T cells, which occurred even in the absence of innate immune signalling through a well known CpG DNA sensor-Toll-like receptor 9 (TLR9) or Z-DNA binding protein 1 (ZBP1, also known as DAI, which was recently reported as a potential B-form DNA sensor). Moreover, bone-marrow-transfer experiments revealed that TBK1-mediated signalling in haematopoietic cells was critical for the induction of antigen-specific B and CD4(+) T cells, whereas in non-haematopoietic cells TBK1 was required for CD8(+) T-cell induction. These data suggest that TBK1 is a key signalling molecule for DNA-vaccine-induced immunogenicity, by differentially controlling DNA-activated innate immune signalling through haematopoietic and non-haematopoietic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ishii, Ken J -- Kawagoe, Tatsukata -- Koyama, Shohei -- Matsui, Kosuke -- Kumar, Himanshu -- Kawai, Taro -- Uematsu, Satoshi -- Takeuchi, Osamu -- Takeshita, Fumihiko -- Coban, Cevayir -- Akira, Shizuo -- England -- Nature. 2008 Feb 7;451(7179):725-9. doi: 10.1038/nature06537.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST). kenishii@biken.osaka-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18256672" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow/immunology ; Chimera/immunology ; DNA/immunology ; Electroporation ; Fibroblasts ; Glycoproteins/deficiency ; Immunity, Innate/*immunology ; Interferon Type I/immunology/metabolism ; Mice ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Receptor, Interferon alpha-beta/deficiency/genetics/metabolism ; T-Lymphocytes/cytology/immunology ; Toll-Like Receptor 9/deficiency/genetics/metabolism ; Vaccination ; Vaccines, DNA/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-10-14
    Description: Systems for protein degradation are essential for tight control of the inflammatory immune response. Autophagy, a bulk degradation system that delivers cytoplasmic constituents into autolysosomes, controls degradation of long-lived proteins, insoluble protein aggregates and invading microbes, and is suggested to be involved in the regulation of inflammation. However, the mechanism underlying the regulation of inflammatory response by autophagy is poorly understood. Here we show that Atg16L1 (autophagy-related 16-like 1), which is implicated in Crohn's disease, regulates endotoxin-induced inflammasome activation in mice. Atg16L1-deficiency disrupts the recruitment of the Atg12-Atg5 conjugate to the isolation membrane, resulting in a loss of microtubule-associated protein 1 light chain 3 (LC3) conjugation to phosphatidylethanolamine. Consequently, both autophagosome formation and degradation of long-lived proteins are severely impaired in Atg16L1-deficient cells. Following stimulation with lipopolysaccharide, a ligand for Toll-like receptor 4 (refs 8, 9), Atg16L1-deficient macrophages produce high amounts of the inflammatory cytokines IL-1beta and IL-18. In lipopolysaccharide-stimulated macrophages, Atg16L1-deficiency causes Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-dependent activation of caspase-1, leading to increased production of IL-1beta. Mice lacking Atg16L1 in haematopoietic cells are highly susceptible to dextran sulphate sodium-induced acute colitis, which is alleviated by injection of anti-IL-1beta and IL-18 antibodies, indicating the importance of Atg16L1 in the suppression of intestinal inflammation. These results demonstrate that Atg16L1 is an essential component of the autophagic machinery responsible for control of the endotoxin-induced inflammatory immune response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saitoh, Tatsuya -- Fujita, Naonobu -- Jang, Myoung Ho -- Uematsu, Satoshi -- Yang, Bo-Gie -- Satoh, Takashi -- Omori, Hiroko -- Noda, Takeshi -- Yamamoto, Naoki -- Komatsu, Masaaki -- Tanaka, Keiji -- Kawai, Taro -- Tsujimura, Tohru -- Takeuchi, Osamu -- Yoshimori, Tamotsu -- Akira, Shizuo -- AI070167/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Nov 13;456(7219):264-8. doi: 10.1038/nature07383. Epub 2008 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18849965" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/analogs & derivatives/pharmacology ; Animals ; Autophagy/*genetics ; Carrier Proteins/*genetics ; Chimera ; Colitis/chemically induced/immunology ; Dextran Sulfate/pharmacology ; Female ; Gene Expression Regulation/*drug effects ; Interleukin-1beta/*biosynthesis/metabolism ; Lipopolysaccharides/*pharmacology ; Macrophages/*drug effects/*metabolism ; Mice ; Mice, Inbred C57BL ; Mutation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-22
    Description: Ferromagnetic spin order has been realized in the LaCrO3-LaFeO3 superlattices. Ferromagnetic coupling between Fe3+ and Cr3+ through oxygen has long been expected on the basis of Anderson, Goodenough, and Kanamori rules. Despite many studies of Fe-O-Cr-based compounds, random positioning of Fe3+ and Cr3+ ions has frustrated the observation of ferromagnetic properties. By creating artificial superlattices of Fe3+ and Cr3+ layer along the [111] direction, ferromagnetic ordering has been achieved.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ueda -- Tabata -- Kawai -- New York, N.Y. -- Science. 1998 May 15;280(5366):1064-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9582117" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-02
    Description: More than 130 million people worldwide chronically infected with hepatitis C virus (HCV) are at risk of developing severe liver disease. Antiviral treatments are only partially effective against HCV infection, and a vaccine is not available. Development of more efficient therapies has been hampered by the lack of a small animal model. Building on the observation that CD81 and occludin (OCLN) comprise the minimal set of human factors required to render mouse cells permissive to HCV entry, we previously showed that transient expression of these two human genes is sufficient to allow viral uptake into fully immunocompetent inbred mice. Here we demonstrate that transgenic mice stably expressing human CD81 and OCLN also support HCV entry, but innate and adaptive immune responses restrict HCV infection in vivo. Blunting antiviral immunity in genetically humanized mice infected with HCV results in measurable viraemia over several weeks. In mice lacking the essential cellular co-factor cyclophilin A (CypA), HCV RNA replication is markedly diminished, providing genetic evidence that this process is faithfully recapitulated. Using a cell-based fluorescent reporter activated by the NS3-4A protease we visualize HCV infection in single hepatocytes in vivo. Persistently infected mice produce de novo infectious particles, which can be inhibited with directly acting antiviral drug treatment, thereby providing evidence for the completion of the entire HCV life cycle in inbred mice. This genetically humanized mouse model opens new opportunities to dissect genetically HCV infection in vivo and provides an important preclinical platform for testing and prioritizing drug candidates and may also have utility for evaluating vaccine efficacy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858853/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858853/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dorner, Marcus -- Horwitz, Joshua A -- Donovan, Bridget M -- Labitt, Rachael N -- Budell, William C -- Friling, Tamar -- Vogt, Alexander -- Catanese, Maria Teresa -- Satoh, Takashi -- Kawai, Taro -- Akira, Shizuo -- Law, Mansun -- Rice, Charles M -- Ploss, Alexander -- R01 AI072613/AI/NIAID NIH HHS/ -- R01 AI079031/AI/NIAID NIH HHS/ -- R01 AI099284/AI/NIAID NIH HHS/ -- R01 AI107301/AI/NIAID NIH HHS/ -- R01 CA057973/CA/NCI NIH HHS/ -- R01AI072613/AI/NIAID NIH HHS/ -- R01AI079031/AI/NIAID NIH HHS/ -- R01AI099284/AI/NIAID NIH HHS/ -- R01CA057973/CA/NCI NIH HHS/ -- RC1 DK087193/DK/NIDDK NIH HHS/ -- RC1DK087193/DK/NIDDK NIH HHS/ -- England -- Nature. 2013 Sep 12;501(7466):237-41. doi: 10.1038/nature12427. Epub 2013 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23903655" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD81/genetics/metabolism ; Cell Line ; Cyclophilin A/genetics/metabolism ; *Disease Models, Animal ; *Genetic Engineering ; Hepacivirus/immunology/*physiology ; Hepatitis C/*genetics/immunology/*virology ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Occludin/genetics/metabolism ; STAT1 Transcription Factor/deficiency ; Viremia/virology ; Virion/growth & development/physiology ; *Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...