ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Publication Date: 2024-03-15
    Description: Seawater acidification (SA) has been documented to either inhibit, enhance, or result in no effect on marine primary productivity (PP). In order to examine the effects of SA in changing environments, we investigated the influences of SA (a decrease of 0.4 pHtotal units with corresponding CO2 concentrations in the range of 22.0–39.7 µM) on PP through deck-incubation experiments at 101 stations in the Taiwan Strait and the South China Sea, including the continental shelf and slope, as well as the deep-water basin. The daily primary productivities in surface seawater under incident solar radiation ranged from 17–306 µg C/µg Chl a/d, with the responses of PP to SA being region-dependent and the SA-induced changes varying from −88 % (inhibition) to 57 % (enhancement). The SA treatment stimulated PP in surface waters of coastal, estuarine, and shelf waters but suppressed it in the South China Sea basin. Such SA-induced changes in PP were significantly related to in situ pH and solar radiation in surface seawater but negatively related to salinity changes. Our results indicate that phytoplankton cells are more vulnerable to a pH drop in oligotrophic waters. Contrasting responses of phytoplankton productivity in different areas suggest that SA impacts on marine primary productivity are region-dependent and regulated by local environments.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Change; Chlorophyll a; Coast and continental shelf; Entire community; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Irradiance; Laboratory experiment; LATITUDE; LONGITUDE; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Primary production/Photosynthesis; Primary production of carbon per chlorophyll a; Salinity; Station label; Temperate; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 6363 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: The rise of atmospheric pCO2 has created a number of problems for marine ecosystem. In this study, we initially quantified the effects of elevated pCO2 on the group-specific mortality of phytoplankton in a natural community based on the results of mesocosm experiments. Diatoms dominated the phytoplankton community, and the concentration of chlorophyll a was significantly higher in the high-pCO2 treatment than the low-pCO2 treatment. Phytoplankton mortality (percentage of dead cells) decreased during the exponential growth phase. Although the mortality of dinoflagellates did not differ significantly between the two pCO2 treatments, that of diatoms was lower in the high-pCO2 treatment. Small diatoms dominated the diatom community. Although the mortality of large diatoms did not differ significantly between the two treatments, that of small diatoms was lower in the high-pCO2 treatment. These results suggested that elevated pCO2 might enhance dominance by small diatoms and thereby change the community structure of coastal ecosystems.
    Keywords: Abundance; Abundance per volume; Alkalinity, total; Ammonium; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell size, standard deviation; Chlorophyll a; Coast and continental shelf; Community composition and diversity; Day of experiment; Entire community; EXP; Experiment; Fucoxanthin; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Laboratory experiment; Mesocosm or benthocosm; Mortality; Mortality/Survival; Nitrate and Nitrite; Nitrite; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Peridinin; pH; Phosphate; Salinity; Sampling date; Signal; Silicate; Spectrophotometric; Temperate; Temperature, water; Treatment; Type; Wuyuan_Bay_OA
    Type: Dataset
    Format: text/tab-separated-values, 7366 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: While seawater acidification induced by elevated CO2 is known to impact coccolithophores, the effects in combination with decreased salinity caused by sea ice melting and/or hydrological events have not been documented. Here we show the combined effects of seawater acidification and reduced salinity on growth, photosynthesis and calcification of Emiliania huxleyi grown at 2 CO2 concentrations (low CO2 LC:400 μatm; high CO2 HC:1000 μatm) and 3 levels of salinity (25, 30, and 35 per mil). A decrease of salinity from 35 to 25 per mil increased growth rate, cell size and photosynthetic performance under both LC and HC. Calcification rates were relatively insensitive to salinity though they were higher in the LC-grown compared to the HC-grown cells at 25 per mil salinity, with insignificant differences under 30 and 35 per mil. Since salinity and OA treatments did not show interactive effects on calcification, changes in calcification: photosynthesis ratios are attributed to the elevated photosynthetic rates at lower salinities, with higher ratios of calcification to photosynthesis in the cells grown under 35 per mil compared with those grown at 25 per mil. In contrast, photosynthetic carbon fixation increased almost linearly with decreasing salinity, regardless of the pCO2 treatments. When subjected to short-term exposure to high light, the low-salinity-grown cells showed the highest photochemical effective quantum yield with the highest repair rate, though the HC treatment enhanced the PSII damage rate. Our results suggest that, irrespective of pCO2, at low salinity Emiliania huxleyi up-regulates its photosynthetic performance which, despite a relatively insensitive calcification response, may help it better adapt to future ocean global environmental changes, including ocean acidification, especially in the coastal areas of high latitudes.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate, standard deviation; Calcification rate/Photosynthesis rate, ratio; Calcification rate/Photosynthesis rate, ratio, standard deviation; Calcification rate of carbon per cell; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Carotenoids, standard deviation; Carotenoids per cell; Cell, diameter; Cell, diameter, standard deviation; Chlorophyll a, standard deviation; Chlorophyll a per cell; Chlorophyll c, standard deviation; Chlorophyll c per cell; Chromista; Effective quantum yield; Effective quantum yield, standard deviation; Emiliania huxleyi; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Haptophyta; Laboratory experiment; Laboratory strains; Maximum quantum yield of photosystem II; Maximum quantum yield of photosystem II, standard deviation; Net photosynthesis rate, per cell; Net photosynthesis rate, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phytoplankton; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Registration number of species; Repair/damage ratio; Repair/damage ratio, standard deviation; Salinity; Single species; Species; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 456 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-22
    Description: Eutrophic coastal regions are highly productive and greatly influenced by human activities. Primary production supporting the coastal ecosystems is supposed to be affected by progressive ocean acidification driven by increasing CO2 emissions. In order to investigate the effects of high pCO2 (HC) on eutrophic plankton community structure and ecological functions, we employed 9 mesocosms and carried out an experiment under ambient (410 ppmv) and future high (1000 ppmv) atmospheric pCO2 conditions, using in situ plankton community in Wuyuan Bay, East China Sea. Our results showed that HC along with natural seawater temperature rise significantly boosted biomass of diatoms with decreased abundance of dinoflagellates in the late stage of the experiment, demonstrating that HC repressed the succession from diatoms to dinoflagellates, a phenomenon observed during algal blooms in the East China Sea. HC did not significantly influence the primary production or biogenic silica contents of the phytoplankton assemblages. However, the HC treatments increased the abundance of viruses and heterotrophic bacteria, reflecting a refueling of nutrients for phytoplankton growth from virus-mediated cell lysis and bacterial degradation of organic matters. Conclusively, our results suggest that increasing CO2 concentrations can modulate plankton structure including the succession of phytoplankton community and the abundance of viruses and bacteria in eutrophic coastal waters, which may lead to altered biogeochemical cycles of carbon and nutrients.
    Keywords: Ammonium; Aragonite saturation state; Bacteria; Bicarbonate ion; Biogenic silica; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chlorophyll a; Coast and continental shelf; Community composition and diversity; Day of experiment; Entire community; EXP; Experiment; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Mesocosm or benthocosm; Night period respiration, carbon; Nitrate; Nitrite; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Primary production, carbon assimilation; Primary production/Photosynthesis; Replicates; Respiration; Salinity; Silicate; Temperate; Temperature, water; Treatment; Type; Viral abundance; Wuyuan_Bay_OA
    Type: Dataset
    Format: text/tab-separated-values, 6225 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    SAGE PUBLICATIONS LTD
    In:  EPIC3The Holocene, SAGE PUBLICATIONS LTD, 22, pp. 1385-1392, ISSN: 0959-6836
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-11-15
    Description: The German Antarctic Receiving Station (GARS) O’Higgins at the northern tip of the Antarctic Peninsula is a dual purpose facility for earth observation and has existed for more than 20 years. It serves as a satellite ground station for payload data downlink and telecommanding of remote sensing satellites as well as a geodetic observatory for global reference systems and global change. Both applications use the same 9 m diameter radio antenna. Major outcomes of this usage are summarised in this paper. The satellite ground station O’Higgins (OHG) is part of the global ground station network of the German Remote Sensing Data Centre (DFD) operated by the German Aerospace Centre (DLR). It was established in 1991 to provide remote sensing data downlink support within the missions of the European Remote Sensing Satellites ERS-1 and ERS-2. These missions provided valuable insights into the changes of the Antarctic ice shield. Especially after the failure of the on-board data recorder, OHG became an essential downlink station for ERS-2 real-time data transmission. Since 2010, OHG is manned during the entire year, specifically to support the TanDEM-X mission. OHG is a main dump station for payload data, monitoring and telecommanding of the German TerraSAR-X and TanDEM-X satellites. For space geodesy and astrometry the radio antenna O’Higgins significantly improves coverage over the southern hemisphere and plays an essential role within the global Very Long Baseline Interferometry (VLBI) network. In particular the determination of the Earth Orientation Parameters (EOP) and the sky coverage of the International Celestial Reference Frame (ICRF) benefit from the location at a high southern latitude. Further, the resolution of VLBI images of active galactic nuclei (AGN), cosmic radio sources defining the ICRF, improves significantly when O’Higgins is included in the network. The various geodetic instrumentation and the long time series at O’Higgins allow a reliable determination of crustal motions. VLBI station velocities, continuous GNSS measurements and campaign-wise absolute gravity measurements consistently document a vertical rate of about 5 mm/a. This crustal uplift is interpreted as an elastic rebound due to ice loss as a consequence of the ice shelf disintegration in the Prince Gustav Channel in the late 1990s. The outstanding location on the Antarctic continent and its year-around operation make GARS O’Higgins in future increasingly attractive for polar orbiting satellite missions and a vitally important station for the global VLBI network. Future plans call for the development of an observatory for environmentally relevant research. That means that the portfolio of the station will be expanded including the expansion of the infrastructure and the construction and operation of new scientific instruments suitable for long-term measurements and satellite ground truthing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-12-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 81 (1997), S. 5343-5343 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Recent progress in oxide perovskite thin-film technology has led to the discovery of a large negative magnetoresistance at room temperature in the doped manganate perovskite thin films. For applications such as magnetic-field sensing, the saturation magnetic field for large magnetoresistance has to be significantly lowered. The magnetic and transport properties of the doped manganates involve a curious magnetic-field scale, on the order of 1–10 T. Upon the application of a field on this scale, the magnetoresistance saturates, and a significant broadening of the temperature-dependent magnetization is seen. An understanding of the materials physics that underlie such behavior can point to new ways of lowering the saturation field in this class of materials. We argue that this characteristic field is suggestive of an inhomogeneous magnetic state in the system. We will discuss the basic phenomena and physics of magnetotransport in this class of materials. We will also report the successful fabrication of a trilayer thin-film pillar structure made using the doped manganate perovskites in which a magnetoresistance change by about a factor of 2 was observed at temperatures below 100 K in a field less than 200 Oe, proving that large magnetoresistance in low field can be obtained in these materials. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...