ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 2995-3003 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The velocity shear which exists between three layers in an ideal plasma is studied. This configuration is modeled as a jet (or, strictly speaking, a wake) embedded in a uniform medium using a magnetohydrodynamics (MHD) code developed for astrophysical jet simulations. Weak and strong magnetic fields are considered both inside and outside the jet with a shear Mach number of 6. The shear can be Kelvin–Helmholtz (KH) unstable and evolve into a new less sheared pattern. There exists extensive literature on the KH instability which is extended by quantitatively describing the MHD properties of the fluctuations associated with the instability. To do so, a time series analysis of the fluctuations at various points inside and adjacent to the jet is performed. Specifically, points either in the center of the jet or just outside the transition layer—the initial location of the shear layer are considered. In the nonlinear stage, the perturbation is found to be a sum of the fast magnetosonic mode, slow magnetosonic mode, and the Alfvén component. To quantitatively evaluate the fluctuations, the normalized cross-helicity and Elsässer ratios are calculated, which in turn measure the degree of Alfvénicity. Fully nonlinear fluctuations are found to be more Alfvénic than magnetosonic in the low β case (β(approximate)0.833) as compared with high β case (β(approximate)13.3). This is in contrast to linear modes generated by the KH instability, which are magnetosonic modes. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0794
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Corotating solar wind streams emanating from stable coronal structures provide an unique opportunity to compare the response of planetary ionospheres to the energy conveyed in the streams. For recurrent solar conditions the “signal” propagating outward along spiral paths in interplanetary space can at times exhibit rather similar content at quite different downstream locations in the ecliptic plane. Using solar wind measurements from plasma detectors on ISEE-3, Pioneer Venus Orbiter (PVO) and Helios-A, as well as in-situ ion composition measurements from Bennett Ion Mass Spectrometers on the Atmosphere Explorer-E and PVO spacecraft, corotating stream interactions are examined at Earth and Venus. During May–July 1979 a sequence of distinct, recurrent coronal regions developed at the Sun. Analysis of these regions and the associated solar wind characteristics indicates a corrresponding sequence of corotating streams, identifiable over wide distances. The time series of solar wind velocity variations observed at Earth, Venus, and the Helios-A positions during June–July attests to intervals of corotating stream propagation. The characteristics of the stream which passed Earth on July 3, are observed at Helios-A and at Venus (PVO) about 8 days later, consistent with the spiral path propagation delay times between the locations in the ecliptic plane. On July 3, Earth and Venus have a wide azimuthal separation of about 142
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We have studied symmetric mass injection into a dipole magnetic field using a 2-D ideal magnetohydrodynamic (MHD) numerical model as a simulation of the formation of Kippenhahn-Schlüter (K-S)-type quiescent prominence (QP) magnetic field configurations. The result shows that there is an optimum magnetic field strength for QP formation, suggesting why prominences do not form above every neutral line. In the model, we varied the injection velocity, density, and magnetic field strength to find the optimum conditions for the formation of a K-S-type field configuration. Such a configuration is assumed to be necessary for QP formation in which injected plasma accumulates and subsequently condenses on magnetic field lines. The condensed plasma would, then, be supported by magnetic field against gravity. We find that a weaker magnetic field strength is more favorable for the condensation but that a stronger field is more favorable for the support against gravity. These two conflicting conditions lead to an optimum field strength for a QP formation by mass injection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 174 (1997), S. 53-63 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The characteristics of the magnetic field ubiquitously permeating the coronal plasma are still largely unknown. In this paper we analyze some aspects of coronal physics, related to the magnetic field behavior, which forthcoming SOHO UVCS observations can help better understand. To this end, three coronal structures will be examined: streamers, coronal mass ejections (CMEs), and coronal holes. As to streamers and CMEs, we show, via simulations of the Ly-α and white-light emission from these objects, calculated on the basis of recent theoretical models (Wang et al., 1995), how new data from SOHO can help in advancing our knowledge of the streamer/CME magnetic configuration. Our discussion highlights also those observational signatures which might offer clues on reconnection processes in streamers' current sheets. Coronal holes (CHs) are discussed in the last section of the paper. Little is known about CH flux tube geometry, which is closely related to the behavior of the solar wind at small heliocentric distances. Indirect evidence for the flux tube spreading factors, within a few solar radii, is here examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We examine how the initial state (pre-event corona) affects the numerical MHD simulation for a coronal mass ejection (CME). Earlier simulations based on a pre-event corona with a homogeneous density and temperature distribution at the lower boundary (i.e., solar surface) have been used to analyze the role of streamer properties in determining the characteristics of loop-like transients. The present paper extends these studies to show how a broader class of global coronal properties leads not only to different types of CMEs, but also modifies the adjacent quiet corona and/or coronal holes. We consider four pre-event coronal cases: (1) constant boundary conditions and a polytropic gas with γ = 1.05; (2) non-constant (latitude dependent) boundary conditions and a polytropic gas with γ = 1.05; (3) constant boundary conditions with a volumetric energy source and γ = 1.67; (4) non-constant (latitude dependent) boundary conditions with a volumetric energy source and γ = 1.67. In all models, the pre-event magnetic fields separate the corona into closed field regions (streamers) and open field regions. The CME's initiation is simulated by introducing at the base of the corona, within the streamer region, a standard pressure pulse and velocity change. Boundary values are determined using MHD characteristic theory. The simulations show how different CMEs, including loop-like transients, clouds and bright rays, might occur. There are significant new features in comparison to published results. We conclude that the pre-event corona is a crucial factor in dictating CMEs properties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 174 (1997), S. 329-340 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We present an analysis of plasma and magnetic field data acquired by the Ulysses spacecraft on May 1994. Our study is motivated by the result of Poletto et al. (1996) who found some evidence for a peak in the power spectrum of magnetic pressure at a frequency ν ≈ 2 × 10−5 Hz, during that period. A re-evaluation of the plasma pressure power spectrum, on the basis of better data than used in the previous work, gives only marginal evidence for a peak at that frequency. If both spectra had excess power in the same spectral range, one might hypothesize that the Pressure Balanced Structures (PBS) detected in the data trace periodically distributed coronal structures which maintain their identity up to large distances. A careful data analysis, however, shows that this interpretation is hardly tenable. Hence, we consider the alternative hypotheses that the observed PBS are either a bundle of magnetic flux tubes, with no characteristic periodicity, in pressure equilibrium with the ambient, or the manifestation, at large distances, of waves generated close to the Sun. To prove the latter case, we made a test simulation of the evolution with heliocentric distance of an ensemble of Alfvén and slow mode waves, generated close to the Sun, and show that structures similar to those we analyzed may form in the interplanetary medium. Our simulations also seem to show that together with PBS, magnetic holes, frequently observed in the Ulysses data, could also originate from the nonlinear evolution of large amplitude slow waves in quasi-perpendicular propagation. We conclude that the observed PBS most likely arise via an in situ generation mechanism, rather than being remnants of solar structures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The fact that magnetically structured regions exist in the solar atmosphere has been known for a number of years. It has been suggested that different kinds of magnetohydrodynamic (MHD) waves can be efficiently damped in these regions and that the dissipated wave energy may be responsible for the observed enhancement in radiative losses. From a theoretical point of view, an important task would be to investigate the propagation and dissipation of MHD waves in these highly structured regions of the solar atmosphere. In this paper, we study the behavior of MHD body and surface waves in a medium with either a single or double (slab) magnetic interface by use of a nonlinear, two-dimensional, time-dependent, ideal MHD numerical model constructed on the basis of a Lagrangean grid and semi-implicit scheme. The processes of wave confinement and wave energy leakage are discussed in detail. It is shown that the obtained results depend strongly on the type of perturbations imposed on the interface or slab and on the plasma parameter, β. The relevance of the obtained results to the heating problem of the upper parts of the solar atmosphere is also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 40 (1975), S. 487-499 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The mathematical basis for approximating the solar wind expansion as nearly radial is examined and defined, removing earlier restrictions thought to occur in the presence of a magnetic field and large variations in latitude. The equations and side conditions governing quasi-radial flow are derived and solved for a simple example to illustrate how this technique can be used for global models of the solar wind.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 45 (1975), S. 255-266 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The influence of latitudinally dependent boundary conditions on the large radius values of meridional flow in the distant solar wind is examined through a double perturbation expansion of the magnetohydrodynamic equations. A general result is derived for the meridional velocity which allows arbitrary specification of radial velocity, radial magnetic field, and mass flux, as a function of colatitude at some coronal reference surface. Three specific examples are treated, including the model of Pneuman and Kopp (1971). The latter example indicates that there may be flow toward the equator at large radii, as opposed to the pure equatorial divergence of internally generated motion due to a flow which is latitudinally uniform at the reference radius. A solar cycle effect most probably averages the boundary conditions so that only the equatorial divergence from an average spherically symmetric corona is seen in comet-tail observations. This may also explain the off-and-on-again nature of the meridional gradient in the radial velocity of the solar wind as seen in radio scintillation observations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 87 (1999), S. 319-322 
    ISSN: 1572-9672
    Keywords: SOHO ; Ulysses ; streamers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We present results from SOHO/UVCS measurements of the density and flow speed of plasma at the Sun and again of the same plasma by Ulysses/SWOOPS in the solar wind. UVCS made measurements at 3.5 and 4.5 solar radii and Ulysses was at 5.1 AU. Data were taken for nearly 2 weeks in May–June 1997 at 9–10 degrees north of the equator in the streamer belt on the east limb. Density and flow speed were compared to see if near Sun characteristics are preserved in the interplanetary medium. By chance, Ulysses was at the very northern edge of the streamer belt. Nevertheless, no evidence was found of fast wind or mixing of slow wind with fast wind coming from the northern polar coronal hole. The morphology of the streamer belt was similar at the beginning and end of the observing period, but was markedly different during the middle of the period. A corresponding change in density (but not flow speed) was noted at Ulysses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...